Bipartizing with a Matching*

<u>Carlos V. G. C. Lima</u>^a Dieter Rautenbach^b Uéverton S. Souza^c Jayme L. Szwarcfiter^d

 a Departamento de Ciência da Computação, UFMG, Brazil.

^bInstitute of Optimization and Operations Research, Ulm University, Germany.

^c Instituto de Computação, UFF, Brazil.

 $^d{\rm Programa}$ de Engenharia de Sistemas e Computação, COPPE, UFRJ, Brazil.

ForWorC - 2019

• Let G = (V, E) and Π be a graph and a graph property, respectively.

- Let G = (V, E) and Π be a graph and a graph property, respectively.
- Graph modification problems are those in which some changes in E(G) (V(G)) are required in order to obtain a new graph satisfying Π .

- Let G = (V, E) and Π be a graph and a graph property, respectively.
- Graph modification problems are those in which some changes in E(G) (V(G)) are required in order to obtain a new graph satisfying Π .
 - Completion it only allows the addition of edges (vertices).
 - Deletion it only allows the deletion of edges (vertices).
 - Editing it allows additions and deletions of edges (vertices).

- Let G = (V, E) and Π be a graph and a graph property, respectively.
- Graph modification problems are those in which some changes in E(G) (V(G)) are required in order to obtain a new graph satisfying Π .
 - Completion it only allows the addition of edges (vertices).
 - Deletion it only allows the deletion of edges (vertices).
 - Editing it allows additions and deletions of edges (vertices).
- For a set $M \subseteq E(G)$, if G M is bipartite, then M is said to be an edge bipartizing set of G.

- Let G = (V, E) and Π be a graph and a graph property, respectively.
- Graph modification problems are those in which some changes in E(G) (V(G)) are required in order to obtain a new graph satisfying Π .
 - Completion it only allows the addition of edges (vertices).
 - Deletion it only allows the deletion of edges (vertices).
 - Editing it allows additions and deletions of edges (vertices).
- For a set $M \subseteq E(G)$, if G M is bipartite, then M is said to be an edge bipartizing set of G.
 - All graphs admit an edge bipartizing set.

- Let G = (V, E) and Π be a graph and a graph property, respectively.
- Graph modification problems are those in which some changes in E(G) (V(G)) are required in order to obtain a new graph satisfying Π .
 - Completion it only allows the addition of edges (vertices).
 - Deletion it only allows the deletion of edges (vertices).
 - Editing it allows additions and deletions of edges (vertices).
- For a set $M \subseteq E(G)$, if G M is bipartite, then M is said to be an edge bipartizing set of G.
 - All graphs admit an edge bipartizing set.
 - Several works concern on minimization versions.

- Let G = (V, E) and Π be a graph and a graph property, respectively.
- Graph modification problems are those in which some changes in E(G) (V(G)) are required in order to obtain a new graph satisfying Π .
 - Completion it only allows the addition of edges (vertices).
 - Deletion it only allows the deletion of edges (vertices).
 - Editing it allows additions and deletions of edges (vertices).
- For a set $M \subseteq E(G)$, if G M is bipartite, then M is said to be an edge bipartizing set of G.
 - All graphs admit an edge bipartizing set.
 - Several works concern on minimization versions.
 - What happens with restricted edge bipartizing sets?

• Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **wheel** as subgraph.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- Observe that \mathcal{BM} is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any k-pool as subgraph, $k \geq 3$ and odd.

 b_1

 c_2

 b_2

 C_{2}

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- Observe that \mathcal{BM} is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any k-pool as subgraph, $k \geq 3$ and odd.

 b_2

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

 b_2

 C_{2}

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Every $G \in \mathcal{BM}$ does not admit any **k-pool** as subgraph, $k \geq 3$ and odd.

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- \bullet Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Note that removing a **border** from a k-pool, we obtain a graph in \mathcal{BM} .

- Given a finite, simple, and undirected graph G, if M is an edge bipartizing set of G that is a matching, then we call M as **bipartizing matching**.
- Let \mathcal{BM} be the family of all graphs admitting a bipartizing matching.
- Our goal is to decide whether $G \in \mathcal{BM}$. Let us call it as BM problem.
- \bullet Observe that $\mathcal{B}\mathcal{M}$ is closed under taking subgraphs.
- Note that removing a **border** from a k-pool, we obtain a graph in \mathcal{BM} .

- Schaefer (1978): proved the NP-completeness of deciding whether a given graph G admits a removal of a perfect matching in order to obtain a bipartite graph, even for planar cubic graphs.
- Furmańczyk, Kubale, and Radziszowski (2016): considered vertex bipartization of cubic graphs by removing an independent set.
- Bonamy et all. (2018): considered the Independent Feedback Vertex Set problem on P_5 -free Graphs.

A (k, d)-coloring of a graph G is a k-vertex coloring such that each vertex has at most d neighbors with same color as itself.

- Hence $G \in \mathcal{BM}$ if and only if G admits a (2,1)-coloring.
- Is is also known as defective coloring.
- Eaton and Hull (1999): proved that all triangle-free outerplanar graphs are (2,1)-colorable.
- Borodin, Kostochka, and Yancey (2013): studied (2,1)-colorable graphs with respect to the maximum average degree and its relation with the girth.
- Angelini et al. (2017): present a linear-time algorithm which determines that partial 2-trees, a subclass of planar graphs, are (2, 1)-colorable.

- Lima et al. (2017): considered the problem of deciding whether a given graph G admits a removal of a matching in order to obtain a forest.
- **Protti and Souza (2017):** consider characterizations of some graph classes admitting the removal of a matching in order to obtain a forest.

A Linear-Time Algorithm for Subcubic Graphs I

 \bullet A subcubic graph G is one that the maximum degree is at most 3.
- \bullet A subcubic graph G is one that the maximum degree is at most 3.
- We show that every subcubic graph belongs to \mathcal{BM} .

- \bullet A subcubic graph G is one that the maximum degree is at most 3.
- \bullet We show that every subcubic graph belongs to $\mathcal{B}\mathcal{M}.$
- This result can be obtained by results from Erdős (1965), Lovász (1966), and Bondy and Locke (1986) obtained in different contexts.

- A subcubic graph G is one that the maximum degree is at most 3.
- \bullet We show that every subcubic graph belongs to $\mathcal{B}\mathcal{M}.$
- This result can be obtained by results from Erdős (1965), Lovász (1966), and Bondy and Locke (1986) obtained in different contexts.
- Our algorithm is based on the fact that, for any bipartition (A, B) of V(G), if the edges from A to B define a maximal edge cut of G, then the remaining edges define a matching.

- A subcubic graph G is one that the maximum degree is at most 3.
- \bullet We show that every subcubic graph belongs to $\mathcal{B}\mathcal{M}.$
- This result can be obtained by results from Erdős (1965), Lovász (1966), and Bondy and Locke (1986) obtained in different contexts.
- Our algorithm is based on the fact that, for any bipartition (A, B) of V(G), if the edges from A to B define a maximal edge cut of G, then the remaining edges define a matching.
- Hence we swap vertices between the parts A and B in order to obtain a maximal edge cut.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

Algorithm 1: Subcubic graphs.

 v_{2} v_{3} v_{9} v_{9} v_{4} v_{10} v_{11} v_{5} v_{11} v_{6} v_{12} v_{13} v_{14}

 v_{10}

14 return $E(G[A] \cup G[B])$

 ov_7

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

 $\circ v_8$

 v_{0}

 $\circ v_{10}$

 $\neg v_{11}$

 v_{12}

 ϕv_{13}

 δv_{14}

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

 v_1

 v_{2c}

V2

 v_4

 $v_5 \circ$

 $v_6 \circ$

 $\circ v_8$

 bv_{0}

 $\circ v_{10}$

 $\neg v_{11}$

 v_{12}

 ϕv_{13}

 δv_{14}

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

return $E(G[A] \cup G[B])$

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

 v_{1c}

 v_{20}

 v_{90}

 v_{12}

 v_{4c}

 $v_5 \circ$

 $v_6 \circ$

B

-0V8

 v_3

 $\bullet v_{10}$

 δv_{11}

 $\approx v_{13}$

 dv_{14}

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

 v_{1c}

 $v_2 \circ$

 v_{90}

 $v_{10} \propto$

 v_{12} c

 $v_4 \circ$

 $v_5 c$

 v_{6}

14 return $E(G[A] \cup G[B])$

-0V8

 $\circ v_3$

 $\sim v_{11}$

 $\approx v_{13}$

 v_{14}

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

 v_{1c}

 $v_2 \circ$

 v_{90}

 $v_{10} \propto$

 v_{12c}

 $|v_4 \circ$

 $v_5 \circ$

-0V8

 $\circ v_3$

 $\gg v_{11}$

 $\gg v_{13}$

• 26

B

- We start by setting A as a maximal independent set and $B = V(G) \setminus A$.
- \bullet Moreover, we guarantee that the maximum degree in G[A] is at most 1 for all changes.

14 return
$$E(G[A] \cup G[B])$$

• Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.

• Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.

• Even for graphs of maximum degree 4;

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

Main theorem:

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

Main theorem:

It remains NP-complete even for 3-colorable planar graphs of maximum degree 4.

• In order to prove the Main theorem, we prove an auxiliary theorem.

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

Main theorem:

- In order to prove the Main theorem, we prove an auxiliary theorem.
- Let F be a Boolean formula in 3-CNF such that:

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

Main theorem:

- In order to prove the Main theorem, we prove an auxiliary theorem.
- Let F be a Boolean formula in 3-CNF such that:
 - $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ is its variable set;
 - $\mathbf{C} = \{C_1, C_2, \dots, C_m\}$ is its clause set.

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

Main theorem:

- In order to prove the Main theorem, we prove an auxiliary theorem.
- Let F be a Boolean formula in 3-CNF such that:
 - $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ is its variable set;
 - $\mathbf{C} = \{C_1, C_2, \dots, C_m\}$ is its clause set.
 - The associated graph $G_F = (V, E)$ of F is the bipartite graph with $V(G_F) = (\mathbf{X}, \mathbf{C})$, such that $X_i C_j \in E(G_F)$ if and only if C_j contains either x_i or $\overline{x_i}$.

- Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to determine whether a given graph is (2, 1)-colorable.
 - Even for graphs of maximum degree 4;
 - And even for planar graphs of maximum degree 5.

Main theorem:

- In order to prove the Main theorem, we prove an auxiliary theorem.
- Let F be a Boolean formula in 3-CNF such that:
 - $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ is its variable set;
 - $\mathbf{C} = \{C_1, C_2, \dots, C_m\}$ is its clause set.
 - The associated graph $G_F = (V, E)$ of F is the bipartite graph with $V(G_F) = (\mathbf{X}, \mathbf{C})$, such that $X_i C_j \in E(G_F)$ if and only if C_j contains either x_i or $\overline{x_i}$.
 - We say that F is a **planar formula** if and only if G_F is planar.

PLANAR 1-IN-3-SAT₃

• Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;
 - Each variable occurs at most 3 times;

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;
 - Each variable occurs at most 3 times;
 - Each positive literal occurs at most twice;

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;
 - Each variable occurs at most 3 times;
 - Each positive literal occurs at most twice;
 - Every negative literal occurs at most once.

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;
 - Each variable occurs at most 3 times;
 - Each positive literal occurs at most twice;
 - Every negative literal occurs at most once.
 - For each clause, exactly one literal is true.

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;
 - Each variable occurs at most 3 times;
 - Each positive literal occurs at most twice;
 - Every negative literal occurs at most once.
 - For each clause, exactly one literal is true.

Auxiliary Theorem:

PLANAR 1-IN-3-SAT₃ is NP-complete.

- Let PLANAR 1-IN-3-SAT₃ be the problem of deciding if there exists a truth assignment to a planar formula F, where:
 - Each clause has either 2 or 3 literals;
 - Each variable occurs at most 3 times;
 - Each positive literal occurs at most twice;
 - Every negative literal occurs at most once.
 - For each clause, exactly one literal is true.

Auxiliary Theorem:

PLANAR 1-IN-3- SAT_3 is NP-complete.

• We present a polynomial-time reduction from $\rm PLANAR~1\text{--}IN\text{-}3\text{--}SAT_3$ to $\rm BM.$
• Let us call by **head** be the following graph:

• Let us call by **head** be the following graph:

• Let us call by **head** be the following graph:

• We call v as the **neck** of the head.

• Let us call by **head** be the following graph:

- We call v as the **neck** of the head.
- The head has only one bipartizing matching, as in Figure (b).

• Let us call by **head** be the following graph:

- We call v as the **neck** of the head.
- The head has only one bipartizing matching, as in Figure (b).
- Note that if a graph G contains a head as subgraph, then every bipartizing matching of G cannot include any other incident edge to v.

Carlos V. G. C. Lima, Dieter Rautenbach, Uéverton S

Bipartizing with a Matching*

- \bullet We can see that every bipartizing matching M contains exactly one edge of the internal cycle.
 - Except that one with no border.

- \bullet We can see that every bipartizing matching M contains exactly one edge of the internal cycle.
 - Except that one with no border.
- Moreover, if either $c_1c_2 \in M$ or $c_2c_3 \in M$, then:

- We can see that every bipartizing matching M contains exactly one edge of the internal cycle.
 - Except that one with no border.
- Moreover, if either $c_1c_2 \in M$ or $c_2c_3 \in M$, then:
 - b_1 and b_2 are in the same part of G M.
 - b_i and b_{i+1} are in different parts of G M, for $i \ge 3$ and odd.

- \bullet We can see that every bipartizing matching M contains exactly one edge of the internal cycle.
 - Except that one with no border.
- Moreover, if either $c_1c_2 \in M$ or $c_2c_3 \in M$, then:
 - b_1 and b_2 are in the same part of G M.
 - b_i and b_{i+1} are in different parts of G M, for $i \ge 3$ and odd.
- We can generalize this for each pair c_i, c_{i+1} of edges of the internal cycle, for $i \ge 1$ and odd.

• Based on the previous observations and some more technical details, we obtain the clause gadgets of C_i in our reduction from a planar formula F.

- Based on the previous observations and some more technical details, we
 obtain the clause gadgets of C_i in our reduction from a planar formula F.
 - Each rounded H is an induced head graph connected by its neck vertex.

(a) For clauses of size two.

(b) For clauses of size three.

- Based on the previous observations and some more technical details, we obtain the clause gadgets of C_i in our reduction from a planar formula F.
 - Each rounded H is an induced head graph connected by its neck vertex.

(a) For clauses of size two.

(b) For clauses of size three.

• We connect the pairs $\ell_j(i, b), \ell_j(i, w)$ to other two vertices in the variable gadgets, $i \in \{1, 2, 3\}$.

- Based on the previous observations and some more technical details, we obtain the clause gadgets of C_i in our reduction from a planar formula F.
 - Each rounded H is an induced head graph connected by its neck vertex.

- We connect the pairs $\ell_j(i,b), \ell_j(i,w)$ to other two vertices in the variable gadgets, $i \in \{1,2,3\}$.
- We associate a literal of a clause as **true** if and only if both $\ell_j(i, b), \ell_j(i, w)$ are in the same part of G M.

- Based on the previous observations and some more technical details, we obtain the clause gadgets of C_i in our reduction from a planar formula F.
 - Each rounded H is an induced head graph connected by its neck vertex.

- We connect the pairs $\ell_j(i,b), \ell_j(i,w)$ to other two vertices in the variable gadgets, $i \in \{1,2,3\}$.
- We associate a literal of a clause as **true** if and only if both $\ell_j(i, b), \ell_j(i, w)$ are in the same part of G M.
 - Hence, each clause gadget has only one true literal.

• Similarly to the clause gadgets, we obtain our variable gadget of X_i .

• We connect the pairs $d_j(i,b), d_j(i,w)$ to the vertices $\ell_j(i,b), \ell_j(i,w)$ in the clause gadgets, $i \in \{1,2,3\}$.

- We connect the pairs $d_j(i,b), d_j(i,w)$ to the vertices $\ell_j(i,b), \ell_j(i,w)$ in the clause gadgets, $i \in \{1,2,3\}$.
- The pair $d_i(3,b)$ and $d_i(3,w)$ has opposite assignment to the other two corresponding pairs.

- We connect the pairs $d_j(i,b), d_j(i,w)$ to the vertices $\ell_j(i,b), \ell_j(i,w)$ in the clause gadgets, $i \in \{1,2,3\}$.
- The pair $d_i(3,b)$ and $d_i(3,w)$ has opposite assignment to the other two corresponding pairs.
 - Hence, $d_i(3, b)$ and $d_i(3, w)$ represent $\overline{x_i}$ while the other pairs represent x_i .

- We connect the pairs $d_j(i,b), d_j(i,w)$ to the vertices $\ell_j(i,b), \ell_j(i,w)$ in the clause gadgets, $i \in \{1,2,3\}$.
- The pair $d_i(3,b)$ and $d_i(3,w)$ has opposite assignment to the other two corresponding pairs.
 - Hence, $d_i(3,b)$ and $d_i(3,w)$ represent $\overline{x_i}$ while the other pairs represent x_i .
- Note that p_i^4 is the only vertex of degree 5.

- We connect the pairs $d_j(i,b), d_j(i,w)$ to the vertices $\ell_j(i,b), \ell_j(i,w)$ in the clause gadgets, $i \in \{1,2,3\}$.
- The pair $d_i(3,b)$ and $d_i(3,w)$ has opposite assignment to the other two corresponding pairs.
 - Hence, $d_i(3, b)$ and $d_i(3, w)$ represent $\overline{x_i}$ while the other pairs represent x_i .
- Note that p_i^4 is the only vertex of degree 5.
 - Hence, we slightly modify the variable gadget in order to obtain a graph of maximum degree 4.

• We have obtained other polynomial time results, such for:

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

 P_5 -free graphs;

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

 P_5 -free graphs;

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

 P_5 -free graphs;

graphs in which every odd-cycle subgraph is a triangle.

• We also considered parameterized complexity aspects.

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

 P_5 -free graphs;

- We also considered parameterized complexity aspects.
 - $\bullet\,$ We show that ${\rm BM}$ is FPT when parameterized by the clique-width, presenting a Monadic Second Order Logic (MSOL 1) formulation.

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

 P_5 -free graphs;

- We also considered parameterized complexity aspects.
 - We show that ${
 m BM}$ is FPT when parameterized by the clique-width, presenting a Monadic Second Order Logic (MSOL 1) formulation.
 - As a corollary, we prove that there exists polynomial-time algorithms for several graph classes.

• We have obtained other polynomial time results, such for:

• Graphs of bounded dominating set;

 P_5 -free graphs;

- We also considered parameterized complexity aspects.
 - We show that ${
 m BM}$ is FPT when parameterized by the clique-width, presenting a Monadic Second Order Logic (MSOL 1) formulation.
 - As a corollary, we prove that there exists polynomial-time algorithms for several graph classes.
 - In particular, it is polynomial-time solvable for chordal graphs.

Thank You!