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Graph Modification Problems

Let G = (V,E) and Π be a graph and a graph property, respectively.

Graph modification problems are those in which some changes in E(G)
(V (G)) are required in order to obtain a new graph satisfying Π.

Completion – it only allows the addition of edges (vertices).

Deletion – it only allows the deletion of edges (vertices).

Editing – it allows additions and deletions of edges (vertices).

For a set M ⊆ E(G), if G−M is bipartite, then M is said to be an edge
bipartizing set of G.

All graphs admit an edge bipartizing set.

Several works concern on minimization versions.

What happens with restricted edge bipartizing sets?
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Bipartizing Matching

Given a finite, simple, and undirected graph G, if M is an edge bipartizing
set of G that is a matching, then we call M as bipartizing matching.

Let BM be the family of all graphs admitting a bipartizing matching.

Our goal is to decide whether G ∈ BM. Let us call it as BM problem.

Observe that BM is closed under taking subgraphs.
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Carlos V. G. C. Lima, Dieter Rautenbach, Uéverton S. Souza, Jayme L. Szwarcfiter (Universities of Somewhere and Elsewhere)Bipartizing with a Matching* ForWorC – 2019 3 / 1



Bipartizing Matching

Given a finite, simple, and undirected graph G, if M is an edge bipartizing
set of G that is a matching, then we call M as bipartizing matching.

Let BM be the family of all graphs admitting a bipartizing matching.

Our goal is to decide whether G ∈ BM. Let us call it as BM problem.

Observe that BM is closed under taking subgraphs.

Every G ∈ BM does not admit any k-pool as subgraph, k ≥ 3 and odd.

c1 c2

c3

b1

b2b3

|

| |

|

||

(a) 3-pool.

c1 c2

c3

c4

c5

b1

b2

b3b4

b5
|

|
|

|
|
|

(b) 5-pool.
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Related Works I

Schaefer (1978): proved the NP-completeness of deciding whether a given
graph G admits a removal of a perfect matching in order to obtain a bipartite
graph, even for planar cubic graphs.

Furmańczyk, Kubale, and Radziszowski (2016): considered vertex
bipartization of cubic graphs by removing an independent set.

Bonamy et all. (2018): considered the Independent Feedback Vertex Set
problem on P5-free Graphs.
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Related Works II

A (k, d)-coloring of a graph G is a k-vertex coloring such that each
vertex has at most d neighbors with same color as itself.

Hence G ∈ BM if and only if G admits a (2, 1)-coloring.

Is is also known as defective coloring.

Eaton and Hull (1999): proved that all triangle-free outerplanar graphs
are (2, 1)-colorable.

Borodin, Kostochka, and Yancey (2013): studied (2, 1)-colorable graphs
with respect to the maximum average degree and its relation with the girth.

Angelini et al. (2017): present a linear-time algorithm which determines
that partial 2-trees, a subclass of planar graphs, are (2, 1)-colorable.

Carlos V. G. C. Lima, Dieter Rautenbach, Uéverton S. Souza, Jayme L. Szwarcfiter (Universities of Somewhere and Elsewhere)Bipartizing with a Matching* ForWorC – 2019 5 / 1



Related Works III

Lima et al. (2017): considered the problem of deciding whether a given
graph G admits a removal of a matching in order to obtain a forest.

Protti and Souza (2017): consider characterizations of some graph classes
admitting the removal of a matching in order to obtain a forest.
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A Linear-Time Algorithm for Subcubic Graphs I

A subcubic graph G is one that the maximum degree is at most 3.

We show that every subcubic graph belongs to BM.

This result can be obtained by results from Erdős (1965), Lovász (1966), and
Bondy and Locke (1986) obtained in different contexts.

Our algorithm is based on the fact that, for any bipartition (A,B) of V (G),
if the edges from A to B define a maximal edge cut of G, then the remaining
edges define a matching.

Hence we swap vertices between the parts A and B in order to obtain a
maximal edge cut.
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Bondy and Locke (1986) obtained in different contexts.

Our algorithm is based on the fact that, for any bipartition (A,B) of V (G),
if the edges from A to B define a maximal edge cut of G, then the remaining
edges define a matching.

Hence we swap vertices between the parts A and B in order to obtain a
maximal edge cut.
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A Linear-Time Algorithm for Subcubic Graphs II

We start by setting A as a maximal independent set and B = V (G) \A.

Moreover, we guarantee that the maximum degree in G[A] is at most 1 for
all changes.

Algorithm 1: Subcubic graphs.

1 A← A maximal independent set of G
2 B ← V (G) \A
3 while there exists a vertex v ∈ B of type (1, 2) do
4 u← NG[A](v)

5 if u is of type (2, 0) or (3, 0) then
6 B ← B \ {v}
7 A← A ∪ {v}
8 else
9 B ← {B \ {v}} ∪ {u}

10 A← {A \ {u}} ∪ {v}
11 if z ∈ NG[B](v) is of type (0, 2) or (0, 3) then
12 B ← B \ {z}
13 A← A ∪ {z}

14 return E (G[A] ∪G[B])

v1 v7

v8v2

v3 v9

v10v4

v5 v11

v12v6

v13

v14
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Carlos V. G. C. Lima, Dieter Rautenbach, Uéverton S. Souza, Jayme L. Szwarcfiter (Universities of Somewhere and Elsewhere)Bipartizing with a Matching* ForWorC – 2019 8 / 1



A Linear-Time Algorithm for Subcubic Graphs II

We start by setting A as a maximal independent set and B = V (G) \A.

Moreover, we guarantee that the maximum degree in G[A] is at most 1 for
all changes.

Algorithm 1: Subcubic graphs.

1 A← A maximal independent set of G
2 B ← V (G) \A
3 while there exists a vertex v ∈ B of type (1, 2) do
4 u← NG[A](v)

5 if u is of type (2, 0) or (3, 0) then
6 B ← B \ {v}
7 A← A ∪ {v}⇐=
8 else
9 B ← {B \ {v}} ∪ {u}

10 A← {A \ {u}} ∪ {v};
11 if z ∈ NG[B](v) is of type (0, 2) or (0, 3) then
12 B ← B \ {z}
13 A← A ∪ {z}

14 return E (G[A] ∪G[B])

v1 v7

v8v2

v9 v3

v10

v12

v4 v11

v13v5

v6v14

A B
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Main Theorem

Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to
determine whether a given graph is (2, 1)-colorable.

Even for graphs of maximum degree 4;

And even for planar graphs of maximum degree 5.

Main theorem:
It remains NP-complete even for 3-colorable planar graphs of maximum degree 4.

In order to prove the Main theorem, we prove an auxiliary theorem.

Let F be a Boolean formula in 3-CNF such that:
X = {X1, X2, . . . , Xn} is its variable set;
C = {C1, C2, . . . , Cm} is its clause set.

The associated graph GF = (V,E) of F is the bipartite graph
with V (GF ) = (X,C), such that XiCj ∈ E(GF ) if and only if Cj contains
either xi or xi.

We say that F is a planar formula if and only if GF is planar.
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Planar 1-In-3-SAT3

Let Planar 1-In-3-SAT3 be the problem of deciding if there exists a truth
assignment to a planar formula F , where:

Each clause has either 2 or 3 literals;

Each variable occurs at most 3 times;

Each positive literal occurs at most twice;

Every negative literal occurs at most once.

For each clause, exactly one literal is true.

Auxiliary Theorem:

Planar 1-In-3-SAT3 is NP-complete.

We present a polynomial-time reduction from Planar 1-In-3-SAT3 to
BM.
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The Head Graph

Let us call by head be the following graph:

(a) The head graph H. (b) The unique bipartizing
matching of H.

We call v as the neck of the head.

The head has only one bipartizing matching, as in Figure (b).

Note that if a graph G contains a head as subgraph, then every bipartizing
matching of G cannot include any other incident edge to v.
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The Odd-pool

Remember the k-pool graph G by removing a border, for k ≥ 3 and odd.

We can see that every bipartizing matching M contains exactly one edge of
the internal cycle.

Except that one with no border.

Moreover, if either c1c2 ∈M or c2c3 ∈M , then:

b1 and b2 are in the same part of G−M .
bi and bi+1 are in different parts of G−M , for i ≥ 3 and odd.

We can generalize this for each pair ci, ci+1 of edges of the internal cycle,
for i ≥ 1 and odd.
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The Clause Gadgets

Based on the previous observations and some more technical details, we
obtain the clause gadgets of Cj in our reduction from a planar formula F .

Each rounded H is an induced head graph connected by its neck vertex.

We connect the pairs `j(i, b), `j(i, w) to other two vertices in the variable
gadgets, i ∈ {1, 2, 3}.

We associate a literal of a clause as true if and only if both `j(i, b), `j(i, w)
are in the same part of G−M .

Hence, each clause gadget has only one true literal.
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The Variable Gadget

Similarly to the clause gadgets, we obtain our variable gadget of Xi.

We connect the pairs dj(i, b), dj(i, w) to the vertices `j(i, b), `j(i, w) in the
clause gadgets, i ∈ {1, 2, 3}.

The pair di(3, b) and di(3, w) has opposite assignment to the other two
corresponding pairs.

Hence, di(3, b) and di(3, w) represent xi while the other pairs represent xi.

Note that p4i is the only vertex of degree 5.

Hence, we slightly modify the variable gadget in order to obtain a graph of
maximum degree 4.
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Other Results

We have obtained other polynomial time results, such for:

Graphs of bounded dominating set;

P5-free graphs;

graphs in which every odd-cycle subgraph is a triangle.

We also considered parameterized complexity aspects.

We show that BM is FPT when parameterized by the clique-width, presenting
a Monadic Second Order Logic (MSOL 1) formulation.

As a corollary, we prove that there exists polynomial-time algorithms for
several graph classes.

In particular, it is polynomial-time solvable for chordal graphs.
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Thank You!
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