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e Graph modification problems are those in which some changes in E(G)
(V(G)) are required in order to obtain a new graph satisfying II.

e Completion — it only allows the addition of edges (vertices).
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e Editing — it allows additions and deletions of edges (vertices).

e For aset M C E(G), if G — M s bipartite, then M is said to be an edge
bipartizing set of G.

o All graphs admit an edge bipartizing set.
o Several works concern on minimization versions.

o What happens with restricted edge bipartizing sets?
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Related Works |

@ Schaefer (1978): proved the NP-completeness of deciding whether a given
graph G admits a removal of a perfect matching in order to obtain a bipartite
graph, even for planar cubic graphs.

e Furmanczyk, Kubale, and Radziszowski (2016): considered vertex
bipartization of cubic graphs by removing an independent set.

o Bonamy et all. (2018): considered the Independent Feedback Vertex Set
problem on Ps-free Graphs.
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Related Works Il

A (k, d)-coloring of a graph G is a k-vertex coloring such that each

vertex has at most d neighbors with same color as itself.

e Hence G € BM if and only if G admits a (2, 1)-coloring.

e Is is also known as defective coloring.

e Eaton and Hull (1999): proved that all triangle-free outerplanar graphs
are (2, 1)-colorable.

e Borodin, Kostochka, and Yancey (2013): studied (2, 1)-colorable graphs
with respect to the maximum average degree and its relation with the girth.

o Angelini et al. (2017): present a linear-time algorithm which determines
that partial 2-trees, a subclass of planar graphs, are (2, 1)-colorable.
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Related Works Il|

e Lima et al. (2017): considered the problem of deciding whether a given
graph G admits a removal of a matching in order to obtain a forest.

@ Protti and Souza (2017): consider characterizations of some graph classes
admitting the removal of a matching in order to obtain a forest.
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A Linear-Time Algorithm for Subcubic Graphs |

@ A subcubic graph G is one that the maximum degree is at most 3.
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@ Our algorithm is based on the fact that, for any bipartition (A, B) of V(G),
if the edges from A to B define a maximal edge cut of GG, then the remaining
edges define a matching.
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A Linear-Time Algorithm for Subcubic Graphs Il
o We start by setting A as a maximal independent set and B = V(G) \ A.

@ Moreover, we guarantee that the maximum degree in G[A] is at most 1 for

all changes.

Algorithm 1: Subcubic graphs.

1 A + A maximal independent set of G
2 B« V(G)\A

3 while there exists a vertex v € B of type (1,2) do

4 u + Ngp4) (v)

5 if u is of type (2,0) or (3,0) then

6 B+ B\ {v}

7 A+ AU {v}

8 else

; B« {B\ {v}}U{u}

10 A+ {A\{u}} U{v}

11 if z € Ngpj(v) is of type (0,2) or (0,3) then
12 B <+ B\ {z}

13 L A+ AU{z}

14 return E (G[A] U G[B])
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Main Theorem

o Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to
determine whether a given graph is (2, 1)-colorable.
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o Cowen, Goddard, and Jesurum (1997) proved that it is NP-complete to
determine whether a given graph is (2, 1)-colorable.
o Even for graphs of maximum degree 4;

e And even for planar graphs of maximum degree 5.

Main theorem:

It remains NP-complete even for 3-colorable planar graphs of maximum degree 4.

@ In order to prove the Main theorem, we prove an auxiliary theorem.

@ Let F' be a Boolean formula in 3-CNF such that:
o X ={X1,Xs,...,X,} is its variable set;
e C={C1,C%,...,Cn} is its clause set.
e The associated graph Gr = (V, E) of F is the bipartite graph
with V(Gr) = (X, C), such that X;C; € E(GF) if and only if C; contains
either z; or ;.
o We say that I is a planar formula if and only if G is planar.
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PLANAR 1-IN-3-SATj3

@ Let PLANAR 1-IN-3-SAT3 be the problem of deciding if there exists a truth
assignment to a planar formula F', where:
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@ Let PLANAR 1-IN-3-SAT3 be the problem of deciding if there exists a truth
assignment to a planar formula F', where:
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PLANAR 1-IN-3-SATj3

@ Let PLANAR 1-IN-3-SAT3 be the problem of deciding if there exists a truth
assignment to a planar formula F', where:
e Each clause has either 2 or 3 literals;
e Each variable occurs at most 3 times;
o Each positive literal occurs at most twice;
o Every negative literal occurs at most once.

o For each clause, exactly one literal is true.

Auxiliary Theorem:
PLANAR 1-IN-3-SATj3 is NP-complete.

@ We present a polynomial-time reduction from PLANAR 1-IN-3-SATj to
BM.
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The Head Graph

@ Let us call by head be the following graph:
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(a) The head graph H. (b) The unique bipartizing
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The Head Graph

@ Let us call by head be the following graph:
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(a) The head graph H. (b) The unique bipartizing
matching of H.

@ We call v as the neck of the head.

@ The head has only one bipartizing matching, as in Figure (b).
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The Head Graph

@ Let us call by head be the following graph:

()
(a) The head graph H. (b) The unique bipartizing
matching of H.

@ We call v as the neck of the head.
@ The head has only one bipartizing matching, as in Figure (b).

@ Note that if a graph G contains a head as subgraph, then every bipartizing
matching of G cannot include any other incident edge to v.
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The Odd-pool

@ Remember the k-pool graph G by removing a border, for k£ > 3 and odd.
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b2 C3 b3
(N
by

C2

by

€1 Cs
(a) 5-pool.
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(a) 5-pool. (b) 7-pool.

@ We can see that every bipartizing matching M contains exactly one edge of
the internal cycle.

o Except that one with no border.
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(a) 5-pool. (b) 7-pool.

@ We can see that every bipartizing matching M contains exactly one edge of
the internal cycle.

o Except that one with no border.

@ Moreover, if either cicog € M or cocs € M, then:
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by
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(a) 5-pool. (b) 7-pool.

@ We can see that every bipartizing matching M contains exactly one edge of
the internal cycle.

o Except that one with no border.

@ Moreover, if either cico € M or cocs € M, then:

e b1 and by are in the same part of G — M.
o b; and b; 11 are in different parts of G — M, for ¢ > 3 and odd.

V. G. C. Lima, Dieter Rautenbach, Uéverton Bipartizing with a Matching* ForWorC — 2019 12/1



The Odd-pool

@ Remember the k-pool graph G by removing a border, for k£ > 3 and odd.

b: b
b2 C3 b3 y !

Cq by
by

C2
b1
C1 Cs by be
(a) 5-pool. (b) 7-pool.

@ We can see that every bipartizing matching M contains exactly one edge of
the internal cycle.

o Except that one with no border.

@ Moreover, if either cico € M or cocs € M, then:

e b1 and by are in the same part of G — M.
o b; and b; 11 are in different parts of G — M, for ¢ > 3 and odd.

@ We can generalize this for each pair ¢;, ¢;+1 of edges of the internal cycle,
for ¢ > 1 and odd.
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The Clause Gadgets

@ Based on the previous observations and some more technical details, we
obtain the clause gadgets of C; in our reduction from a planar formula F'.
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@ Based on the previous observations and some more technical details, we
obtain the clause gadgets of C; in our reduction from a planar formula F'.

e Each rounded H is an induced head graph connected by its neck vertex.

(a) For clauses of size two. (b) For clauses of size three.
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The Clause Gadgets

@ Based on the previous observations and some more technical details, we

obtain the clause gadgets of C; in our reduction from a planar formula F'.

e Each rounded H is an induced head graph connected by its neck vertex.

(a) For clauses of size two. (b) For clauses of size three.
@ We connect the pairs £;(i,b), £; (i, w) to other two vertices in the variable
gadgets, i € {1,2,3}.
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The Clause Gadgets

@ Based on the previous observations and some more technical details, we
obtain the clause gadgets of C; in our reduction from a planar formula F'.

e Each rounded H is an induced head graph connected by its neck vertex.

7 o % P P by » o

(a) pjp3 € M. (b) pip} € M. (c) P3PS € M.

@ We connect the pairs £;(i,b), £; (i, w) to other two vertices in the variable
gadgets, i € {1,2,3}.

@ We associate a literal of a clause as true if and only if both ¢;(i,b),¢;(i, w)
are in the same part of G — M.
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The Clause Gadgets

@ Based on the previous observations and some more technical details, we
obtain the clause gadgets of C; in our reduction from a planar formula F'.

e Each rounded H is an induced head graph connected by its neck vertex.

(a) pjp3 € M. (b) pip} € M. (c) P3PS € M.
@ We connect the pairs £;(i,b), £; (i, w) to other two vertices in the variable
gadgets, i € {1,2,3}.

@ We associate a literal of a clause as true if and only if both ¢;(i,b),¢;(i, w)
are in the same part of G — M.

e Hence, each clause gadget has only one true literal.
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The Variable Gadget

@ Similarly to the clause gadgets, we obtain our variable gadget of Xj.
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The Variable Gadget

@ Similarly to the clause gadgets, we obtain our variable gadget of Xj.

(a) Variable gadget. (b) p]l.p? e M.
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The Variable Gadget

@ Similarly to the clause gadgets, we obtain our variable gadget of Xj.

di(1,w), di(3,b)

di(1,b) ;

(a) Variable gadget. (b) pjp? € M. (c) pjpj € M.

i(3.w)

@ We connect the pairs d;(%,b),d;(i,w) to the vertices ¢;(i,b),£;(i,w) in the
clause gadgets, i € {1,2,3}.

Carlos V. G. C. Lima, Dieter Rautenbach, Uéverton ¢ Bipartizing with a Matching* ForWorC — 2019  14/1
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(a) Variable gadget. (b) pjp? € M. (c) pjpj € M.

@ We connect the pairs d;(%,b),d;(i,w) to the vertices ¢;(i,b),£;(i,w) in the
clause gadgets, i € {1,2,3}.

@ The pair d;(3,b) and d;(3,w) has opposite assignment to the other two
corresponding pairs.
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@ Similarly to the clause gadgets, we obtain our variable gadget of Xj.
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(a) Variable gadget. (b) pjlp? eEM. (c) p?p? e M.
@ We connect the pairs d;(%,b),d;(i,w) to the vertices ¢;(i,b),£;(i,w) in the
clause gadgets, i € {1,2,3}.

@ The pair d;(3,b) and d;(3,w) has opposite assignment to the other two
corresponding pairs.

e Hence, d;(3,b) and d;(3,w) represent T; while the other pairs represent ;.
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@ Similarly to the clause gadgets, we obtain our variable gadget of Xj.
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di(1,b) X —d,(3.w)
(a) Variable gadget. (b) pjlp? eEM. (c) p?p? e M.
@ We connect the pairs d;(%,b),d;(i,w) to the vertices ¢;(i,b),£;(i,w) in the
clause gadgets, i € {1,2,3}.

@ The pair d;(3,b) and d;(3,w) has opposite assignment to the other two
corresponding pairs.

e Hence, d;(3,b) and d;(3,w) represent T; while the other pairs represent ;.

@ Note that p} is the only vertex of degree 5.
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The Variable Gadget

@ Similarly to the clause gadgets, we obtain our variable gadget of Xj.

G, Ge,

di(1,b) ) = d,(3,w)

: - di(1,0) ; = d,(3,w)

(a) New variable gadget. (b) pjl-p? € M. (c) p?p? € M.
@ We connect the pairs d;(%,b),d;(i,w) to the vertices ¢;(i,b),£;(i,w) in the
clause gadgets, i € {1,2,3}.
@ The pair d;(3,b) and d;(3,w) has opposite assignment to the other two
corresponding pairs.
e Hence, d;(3,b) and d;(3,w) represent T; while the other pairs represent ;.

@ Note that p} is the only vertex of degree 5.

o Hence, we slightly modify the variable gadget in order to obtain a graph of
maximum degree 4.
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Other Results

@ We have obtained other polynomial time results, such for:
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Other Results
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Ps-free graphs;
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Other Results

@ We have obtained other polynomial time results, such for:

e Graphs of bounded dominating set;
Ps-free graphs;

graphs in which every odd-cycle subgraph is a triangle.

@ We also considered parameterized complexity aspects.

o We show that BM is FPT when parameterized by the clique-width, presenting
a Monadic Second Order Logic (MSOL 1) formulation.
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e As a corollary, we prove that there exists polynomial-time algorithms for
several graph classes.
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Other Results

@ We have obtained other polynomial time results, such for:

e Graphs of bounded dominating set;
Ps-free graphs;

graphs in which every odd-cycle subgraph is a triangle.

@ We also considered parameterized complexity aspects.

o We show that BM is FPT when parameterized by the clique-width, presenting
a Monadic Second Order Logic (MSOL 1) formulation.

e As a corollary, we prove that there exists polynomial-time algorithms for
several graph classes.

e In particular, it is polynomial-time solvable for chordal graphs.
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Thank You!
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