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Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G
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Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.
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Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

3 Treewidth behaves very well algorithmically...
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Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [ ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G) ]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...
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Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.
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Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).
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(Single-exponential algorithms on sparse graphs)
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .
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The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]
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End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...
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The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2017]
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Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle’s Theorem.
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12/26



Goal of this project

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion/F-TM-Deletion can be solved in time

fF (tw) · nO(1)

on n-vertex graphs.

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
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Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected and planar: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.
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Complexity of hitting a single minor H

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.
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For topological minors, there (at least) one change

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house K5
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A compact statement for small planar minors

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

All these cases can be succinctly described as follows:

All the graphs on the left are minors of (called the banner)

All the graphs on the right are not minors of ... except P5.
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A dichotomy for hitting connected minors

We can prove that any connected H with |V (H)| ≥ 6 is hard :
{H}-M-Deletion cannot be solved in time 2o(tw·log tw) · nO(1) under the ETH.

Theorem
Let H be a connected planar graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �m and H 6= P5.

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.
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Why the banner??

Every connected component (with at least 5 vertices) of a graph that
excludes the banner as a (topological) minor is either:

a cycle (of any length),
or a tree in which some vertices have been replaced by triangles.

Both such types of components can be maintained by a dynamic
programming algorithm in single-exponential time.

If the characterization of the allowed connected components is
enriched in some way, such as restricting the length of the allowed
cycles or forbidding certain degrees, the problem becomes harder.
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We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
F connected���

�XXXX+ planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]
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Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

F connected����
�XXXXX+ planar: time 2O(tw·log tw) · nO(1).

Extra: Bidimensionality, irrelevant vertices, protrusion decomposition...

skip
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Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip
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Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).

# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

23/26



Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]
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What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).
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Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
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