Mader's conjecture on subdivision of digraphs

Phablo F. S. Moura

Universidade Estadual de Campinas (Unicamp)

Charles University, Praga

ForWorC – I Fortaleza Workshop em Combinatória Fortaleza-CE, 20 de fevereiro de 2019

Subdivision of a digraph

Subdivision of a digraph

Subdivision of a digraph

The subdivision of undirected graphs is similar

Theorem [Mader, 1967]

There exists an integer f(k) such that every graph with minimum degree at least f(k) contains a subdivision of the clique on k vertices

Theorem [Mader, 1967]

There exists an integer f(k) such that every graph with minimum degree at least f(k) contains a subdivision of the clique on k vertices

Conjecture

There exists an integer f(k) such that every digraph D with $\delta^0(D) \geq f(k)$ contains a subdivision of the complete digraph on k vertices

Theorem [Mader, 1967]

There exists an integer f(k) such that every graph with minimum degree at least f(k) contains a subdivision of the clique on k vertices

Conjecture

There exists an integer f(k) such that every digraph D with $\delta^0(D) \geq f(k)$ contains a subdivision of the complete digraph on k vertices

Theorem [Mader, 1967]

There exists an integer f(k) such that every graph with minimum degree at least f(k) contains a subdivision of the clique on k vertices

Conjecture

There exists an integer f(k) such that every digraph D with $\delta^0(D) \geq f(k)$ contains a subdivision of the complete digraph on k vertices

This conjecture is false

Theorem [Thomassen, 1986]

There exists a class of digraphs with arbitrarily large minimum inand out-degree and no directed cycle of even length

Every subdivision of \vec{K}_3 contains an even cycle

Conjecture

Let G be an acyclic digraph. There exists an integer f(G) such that every digraph D with $\delta^+(D) \geq f(G)$ contains a subdivision of G

Conjecture

Let G be an acyclic digraph. There exists an integer f(G) such that every digraph D with $\delta^+(D) \geq f(G)$ contains a subdivision of G

Every acyclic digraph is a subgraph of the transitive tournament of same order

Conjecture

Let G be an acyclic digraph. There exists an integer f(G) such that every digraph D with $\delta^+(D) \geq f(G)$ contains a subdivision of G

Every acyclic digraph is a subgraph of the transitive tournament of same order

Conjecture [Mader, 1985]

There exists an integer $f(TT_k)$ such that every digraph D with $\delta^+(D) \geq f(TT_k)$ contains a subdivision of TT_k

Conjecture

Let G be an acyclic digraph. There exists an integer f(G) such that every digraph D with $\delta^+(D) \geq f(G)$ contains a subdivision of G

Every acyclic digraph is a subgraph of the transitive tournament of same order

Conjecture [Mader, 1985]

There exists an integer $f(TT_k)$ such that every digraph D with $\delta^+(D) \ge f(TT_k)$ contains a subdivision of TT_k .

It was proved for $k \leq 4$ by Mader

Conjecture

Let T be an oriented tree. There exists an integer f(T) such that every digraph D with $\delta^+(D) \geq f(T)$ contains a subdivision of T

Conjecture

Let T be an oriented tree. There exists an integer f(T) such that every digraph D with $\delta^+(D) \ge f(T)$ contains a subdivision of T We still can't prove this conjecture, but we give some evidences...

Conjecture

Let T be an oriented tree. There exists an integer f(T) such that every digraph D with $\delta^+(D) \ge f(T)$ contains a subdivision of T We still can't prove this conjecture, but we give some evidences...

Theorem

Let T be an in-arborescence. There exists an integer f(T) such that every digraph D with $\delta^+(D) \geq f(T)$ contains a subdivision of T

What about digraphs containing cycles?

Fact

Every digraph D has a cycle of size at least $\delta^+(D) + 1$ (i.e. a subdivision of C_2)

What about digraphs containing cycles?

Fact

Every digraph D has a cycle of size at least $\delta^+(D)+1$ (i.e. a subdivision of $C_2)$

Theorem [Alon, 1996]

Every digraph D with $\delta^+(D)\geq 64k$ has k disjoint directed cycles (i.e. a subdivision of k copies of $C_2)$

What about digraphs containing cycles?

Fact

Every digraph D has a cycle of size at least $\delta^+(D) + 1$ (i.e. a subdivision of C_2)

Theorem [Alon, 1996]

Every digraph D with $\delta^+(D)\geq 64k$ has k disjoint directed cycles (i.e. a subdivision of k copies of C_2)

Conjecture [Bermond and Thomassen, 1981] Every digraph D with $\delta^+(D) \geq 2k-1$ has k disjoint directed cycles

Strongly connected components

- Strongly connected if for every $u, v \in V(D)$ there exists a directed path from u to v
- Strongly connected component is a maximal strongly connected subgraph

Strongly connected components

- Strongly connected if for every $u, v \in V(D)$ there exists a directed path from u to v
- Strongly connected component is a maximal strongly connected subgraph

Strongly connected components

- Strongly connected if for every $u, v \in V(D)$ there exists a directed path from u to v
- Strongly connected component is a maximal strongly connected subgraph

Subdivision of directed paths

• Let
$$P = (v_1v_2\cdots v_n)$$
 be a path

▶ P(k₁, k₂,..., k_{n-1}) is obtained from P by replacing every edge {v_i, v_{i+1}} by a directed path of length k_i from v_i to v_{i+1} if i is odd, and from v_{i+1} to v_i if i is even

Subdivision of directed paths

Theorem [Aboulker, Cohen, Havet, Lochet, M., and Thomassé, 2016+]

Let $P(k_1, k_2, \ldots, k_\ell)$ be a path, and let D be a digraph with $\delta^+(D) \ge \sum_{i=1}^\ell k_i$. For every $v \in V(D)$, D contains a path $P(k'_1, k'_2, \ldots, k'_\ell)$ with initial vertex v such that $k'_i \ge k_i$ if i is odd, and $k'_i = k_i$ otherwise

Subdivision of directed paths

Theorem [Aboulker, Cohen, Havet, Lochet, M., and Thomassé, 2016+]

Let $P(k_1, k_2, \ldots, k_\ell)$ be a path, and let D be a digraph with $\delta^+(D) \ge \sum_{i=1}^\ell k_i$. For every $v \in V(D)$, D contains a path $P(k'_1, k'_2, \ldots, k'_\ell)$ with initial vertex v such that $k'_i \ge k_i$ if i is odd, and $k'_i = k_i$ otherwise

Proof

By induction on ℓ . For every path $P(x_1, x_2, \ldots, x_t)$ with $t < \ell$ and every digraph G with $\delta^+(G) \ge \sum_{i=1}^t x_i$, the result holds

$\blacktriangleright \ \delta^+(D) \geq \sum_{i=1}^\ell k_i \implies \exists \ P_{v,u} \text{ of length } k_1$

δ⁺(D) ≥ ∑_{i=1}^ℓ k_i ⇒ ∃ P_{v,u} of length k₁
 C is the component of D − (P_{v,u} − u) containing u

- ▶ $\delta^+(D) \ge \sum_{i=1}^{\ell} k_i \implies \exists P_{v,u} \text{ of length } k_1$
- ▶ C is the component of $D (P_{v,u} u)$ containing u
- ► *H* strongly connected and $\delta^+(H) \ge \delta^+(D) k_1 \implies \exists P_{y,x}$ of length k_2

- ► $\delta^+(D) \ge \sum_{i=1}^{\ell} k_i \implies \exists P_{v,u} \text{ of length } k_1$
- ▶ C is the component of $D (P_{v,u} u)$ containing u
- ► *H* strongly connected and $\delta^+(H) \ge \delta^+(D) k_1 \implies \exists P_{y,x}$ of length k_2

▶ Apply induction hypothesis on $G := H - (P_{y,x} - y)$ (note that $\delta^+(G) \ge \delta^+(D) - k_1 - k_2$)

in-Arborescences

The ℓ -branching in-arborescence of depth k ($B(k, \ell)$):

- $\blacktriangleright \ B(0,\ell)$ is a single vertex, which is the root and the leaf of $B(0,\ell)$
- ▶ $B(k, \ell)$ is obtained from $B(k 1, \ell)$ by taking each leaf of $B(k 1, \ell)$ and adding ℓ new vertices dominating this leaf

Let
$$b(k,\ell):=|V(B(k,\ell)|;$$
 so $b(k,\ell)=\sum_{i=0}^k\ell^i=rac{1-\ell^{k+1}}{1-\ell}$

Examples of in-arborescences

Examples of in-arborescences

Examples of in-arborescences

Theorem [Aboulker, Cohen, Havet, Lochet, M., and Thomassé, 2016+]

There exists an integer $f(k,\ell)$ such that every digraph D with $\delta^+(D)\geq f(k,\ell)$ contains a subdivision of $B(k,\ell)$

Proof idea

- By induction on k and ℓ .
- Start with a packing of *l*-branching in-arborescences that covers a maximum number of vertices

F is a packing of in-arborescence that covers a maximum number of vertices

- *F* is a packing of in-arborescence that covers a maximum number of vertices
- ► *H* is reduced graph of roots

- *F* is a packing of in-arborescence that covers a maximum number of vertices
- H is reduced graph of roots

- *F* is a packing of in-arborescence that covers a maximum number of vertices
- H is reduced graph of roots
- Suppose that $\delta^+(H) \ge f(k-1,p)$, where p is large compared to ℓ $(p := b(k-1,\ell) \cdot (\ell-1) + 1)$

By the induction hypothesis, there exists a subdivision of ${\cal B}(k-1,p)$ in ${\cal H}$

Consider a branching vertex \boldsymbol{r} and the \boldsymbol{p} vertices that dominate \boldsymbol{r} in T

Because $p = b(k - 1, \ell) \cdot (\ell - 1) + 1$, there exists a vertex in the arborescence rooted at r which is dominated by ℓ vertices in D

Because $p = b(k - 1, \ell) \cdot (\ell - 1) + 1$, there exists a vertex in the arborescence rooted at r which is dominated by ℓ vertices in D

Case 1: $\delta^+(H) \ge f(k-1,p)$

A similar construction holds for every non-leaf vertex of \boldsymbol{T}

Recall T is a subdivision of B(k-1,p) in H. Then, $T' \subset T$ corresponds to a subgraph of D that contains a subdivision of $B(k,\ell)$

We show a "Menger-like" theorem to prove the existence of vertex-disjoint directed paths

18/24

Theorem [Klimošová and M., two weeks ago]

Let T be a **hairy** in-arborescence. There exists an integer g(T) such that every digraph D with $\delta^+(D) \ge g(T)$ contains a subdivision of T

Final remarks

We aim to prove this...

Conjecture [Mader, 1985]

There exists an integer $f(TT_k)$ such that every digraph D with $\delta^+(D) \geq f(TT_k)$ contains a subdivision of TT_k

Final remarks

We aim to prove this...

Conjecture [Mader, 1985]

There exists an integer $f(TT_k)$ such that every digraph D with $\delta^+(D) \geq f(TT_k)$ contains a subdivision of TT_k

This seems doable...

Conjecture

Let T be an oriented tree. There exists an integer f(T) such that every digraph D with $\delta^+(D) \geq f(T)$ contains a subdivision of T

Final remarks

We aim to prove this...

Conjecture [Mader, 1985]

There exists an integer $f(TT_k)$ such that every digraph D with $\delta^+(D) \geq f(TT_k)$ contains a subdivision of TT_k

This seems doable...

Conjecture

Let T be an oriented tree. There exists an integer f(T) such that every digraph D with $\delta^+(D)\geq f(T)$ contains a subdivision of T

Our proof relies on the "regularity" of in-arborescences

Other parameters: chromatic number

 $\chi(D)$ is simply the chromatic number of its underlying graph

Theorem [Burr, 1980]

For every oriented forest T with n vertices, there exists an integer $f(T)~(\approx (n-1)^2)$ such that every digraph D with $\chi(D)\geq f(T)$ contains T

Conjecture [Burr, 1980]

Every digraph with chromatic number 2n-2 contains every oriented tree of order n as a subdigraph

Other parameters: chromatic number

 $\chi(D)$ is simply the chromatic number of its underlying graph

Theorem [Burr, 1980]

For every oriented forest T with n vertices, there exists an integer $f(T)~(\approx (n-1)^2)$ such that every digraph D with $\chi(D)\geq f(T)$ contains T

Conjecture [Burr, 1980]

Every digraph with chromatic number 2n-2 contains every oriented tree of order n as a subdigraph

Conjecture

Let T be an oriented tree of order n. Every digraph with chromatic number 2n-2 contains a subdivision of T

Other parameters: dichromatic number

 $\vec{\chi}(D)$ is the smallest integer k such that D admits a k-dicoloring

 $\vec{\chi}(D)$ is the smallest integer k such that D admits a k-dicoloring A k-dicoloring is a k-partition $\{V_1, \ldots, V_k\}$ of V(D) such that $D[V_i]$ is acyclic, for every $i \in [k]$

 $ec{\chi}(D)$ is the smallest integer k such that D admits a k-dicoloring

A k-dicoloring is a k-partition $\{V_1, \ldots, V_k\}$ of V(D) such that $D[V_i]$ is acyclic, for every $i \in [k]$

Theorem [Aboulker, Cohen, Havet, Lochet, M., and Thomassé, 2016+]

Every digraph D such that $\vec{\chi}(D) \geq 4^{n^2-2n+1}(n-1)+1$ contains a subdivision of \vec{K}_n

Other parameters: dichromatic number

 $ec{\chi}(D)$ is the smallest integer k such that D admits a k-dicoloring

A k-dicoloring is a k-partition $\{V_1, \ldots, V_k\}$ of V(D) such that $D[V_i]$ is acyclic, for every $i \in [k]$

Theorem [Aboulker, Cohen, Havet, Lochet, M., and Thomassé, 2016+]

Every digraph D such that $\vec{\chi}(D) \geq 4^{n^2-2n+1}(n-1)+1$ contains a subdivision of \vec{K}_n

How to get better bounds?

phablo@ic.unicamp.br

How does f look like?

For all positive integers k and ℓ such that $\ell \geq 2,$

$$f(1, \ell) = \ell$$
 $f(k, \ell) = t(k, \ell) \cdot (\ell - 1) \cdot k + t(k, \ell),$

 where
 $t(k, \ell) := f(k - 1, b(k - 1, \ell) \cdot (\ell - 1) + 1) \cdot b(k - 1, \ell).$