7

Characterization, probe and sandwich problems on a generalization of threshold graphs

Vinicius F. dos Santos Universidade Federal de Minas Gerais (UFMG)

Joint work with Fernanda Couto, Luerbio Faria, Sylvain Gravier and Sulamita Klein

February, 2019

イロト 不得下 イヨト イヨト

・ロト ・師 ト ・ モト ・ モト

Graph Classes

Some graph classes you probably already heard of:

- Trees
- Interval (Jayme's talk)
- Bipartite
- Complete graphs
- Cycles
- ... (more than 1500 graph classes registered in http://graphclasses.org)

・ロト ・師 ト ・ モト ・ モト

Graph Classes

Some graph classes you probably already heard of:

- Trees
- Interval (Jayme's talk)
- Bipartite
- Complete graphs
- Cycles
- ... (more than 1500 graph classes registered in http://graphclasses.org)

・ロト ・師 ト ・注 ト ・注 ト

Graph Classes

Why study them?

Appear in some applications

- Naturally characterize some extremal cases
- May have strong structural properties, with algorithmic applications
- Help us understand the complexity of some problems
- Sometimes a particular case is a key step for understanding a problem
- They are nice :-)

・ロト ・師 ト ・注 ト ・注 ト

Graph Classes

Why study them?

- Appear in some applications
- Naturally characterize some extremal cases
- May have strong structural properties, with algorithmic applications
- Help us understand the complexity of some problems
- Sometimes a particular case is a key step for understanding a problem
- They are nice :-)

Graph Classes

Why study them?

- Appear in some applications
- Naturally characterize some extremal cases
- May have strong structural properties, with algorithmic applications
- Help us understand the complexity of some problems
- Sometimes a particular case is a key step for understanding a problem

・ロト ・四ト ・モト

They are nice :-)

Graph Classes

Why study them?

- Appear in some applications
- Naturally characterize some extremal cases
- May have strong structural properties, with algorithmic applications
- Help us understand the complexity of some problems
- Sometimes a particular case is a key step for understanding a problem

・ロト ・四ト ・ヨト

They are nice :-)

Graph Classes

Why study them?

- Appear in some applications
- Naturally characterize some extremal cases
- May have strong structural properties, with algorithmic applications
- Help us understand the complexity of some problems
- Sometimes a particular case is a key step for understanding a problem

◆□ ▶ ◆□ ▶ ◆ □ ▶

■ They are nice :-)

Graph Classes

Why study them?

- Appear in some applications
- Naturally characterize some extremal cases
- May have strong structural properties, with algorithmic applications
- Help us understand the complexity of some problems
- Sometimes a particular case is a key step for understanding a problem

くロト く得ト くほと

They are nice :-)

- 花

・ロト ・聞 ト ・足 ト ・ ヨトー

Definition 1

A cograph can be defined recursively as follows:

1 The trivial graph K_1 is a cograph;

2 If G_1, G_2, \ldots, G_p are cographs, then $G_1 \cup G_2 \cup \ldots \cup G_p$ is a cograph,

B If G is a cograph, then \overline{G} is a cograph.

(日) (部)(モン(モ)) 花

Definition 1

A cograph can be defined recursively as follows:

- **1** The trivial graph K_1 is a cograph;
- 2 If G_1, G_2, \ldots, G_p are cographs, then $G_1 \cup G_2 \cup \ldots \cup G_p$ is a cograph,
- **3** If G is a cograph, then \overline{G} is a cograph.

▲口×▲御×▲注×▲注× 注: わへで

Definition 1

A cograph can be defined recursively as follows:

- **1** The trivial graph K_1 is a cograph;
- 2 If G_1, G_2, \ldots, G_p are cographs, then $G_1 \cup G_2 \cup \ldots \cup G_p$ is a cograph,
- **3** If G is a cograph, then \overline{G} is a cograph.

▲口×▲御×▲注×▲注× 注: わへで

Definition 1

A cograph can be defined recursively as follows:

- **1** The trivial graph K_1 is a cograph;
- 2 If G_1, G_2, \ldots, G_p are cographs, then $G_1 \cup G_2 \cup \ldots \cup G_p$ is a cograph,
- **3** If G is a cograph, then \overline{G} is a cograph.

・ロト ・四ト ・モト ・モト

Theorem 2

A cograph is a graph without induced P_4 's, i.e, induced paths with 4 vertices.

 D. G. Corneil and H. Lerchs and L. Stewart Burlingham Complement reducible graphs
Discrete Applied Mathematics, 3, 1981, pp. 163-174.

・ロト ・回ト ・モト ・モト

$$(k, \ell)$$
-Graphs

Definition 3

A graph is (k, ℓ) if its vertex set can be partitioned into at most k independent sets and ℓ cliques.

Some well-known special cases: (0,1), (2,0), (1,1).

A. Brandstädt

Partitions of graphs into one or two independent sets and cliques. Discrete Mathematics,152(1-3), 1996, pp. 47–54.

Threshold graphs

Definition 4

a graph is a threshold graph if there are a real number S and for each vertex v a weight w(v) such that $uv \in E(G)$ if and only if w(u) + w(v) > S.

Theorem 5

A graph is a threshold graph if and only if it is both a cograph and a split graph.

V. Chvátal and P. L. Hammer Aggregation of Inequalities in Integer Programming Studies in Integer Programming, Annals of Discrete Mathematics, 1, 1977, pp. 145 - 162.

Threshold graphs

Definition 4

a graph is a threshold graph if there are a real number S and for each vertex v a weight w(v) such that $uv \in E(G)$ if and only if w(u) + w(v) > S.

Theorem 5

A graph is a threshold graph if and only if it is both a cograph and a split graph.

V. Chvátal and P. L. Hammer Aggregation of Inequalities in Integer Programming Studies in Integer Programming, Annals of Discrete Mathematics, 1, 1977, pp. 145 - 162.

イロト 不得下 イヨト イヨト

Threshold Graphs

They can be constructed from a K_1 by repeated applications of the following two operations:

- 1 Addition of a single isolated vertex to the graph.
- 2 Addition of a single dominating vertex to the graph, i.e. a single vertex that is adjacent to each other vertex.

イロト 不得下 イヨト イヨト

Threshold Graphs

They can be constructed from a K_1 by repeated applications of the following two operations:

- **1** Addition of a single isolated vertex to the graph.
- 2 Addition of a single dominating vertex to the graph, i.e. a single vertex that is adjacent to each other vertex.

くロト くぼト くほト くほう

Threshold Graphs

They can be constructed from a K_1 by repeated applications of the following two operations:

- **1** Addition of a single isolated vertex to the graph.
- 2 Addition of a single dominating vertex to the graph, i.e. a single vertex that is adjacent to each other vertex.

Definitions

A characterization theorem

Applications 0000000000000000

◆□▶ ◆□▶ ◆注▼ ◆注▼ ○注 ● のへ⊙

Definitions

A characterization theorem

Applications 0000000000000000

Definitions

A characterization theorem

Applications 0000000000000000

◆□▶ ◆□▶ ◆注▶ ◆注▶ 二注: のへ⊙

Definitions

A characterization theorem

Applications 0000000000000000

◆□▶ ◆録▶ ◆注▶ ◆注▶ 二注:のへ⊙

Definitions

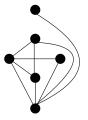
A characterization theorem

Applications 0000000000000000

Definitions

A characterization theorem

Applications 000000000000000



From the literature we know that...

• The RECOGNITION PROBLEM FOR COGRAPHS is solvable in linear time.

・ロト ・何ト ・ヨト

(注)▶ [注]

D. G. Corneil and H. Lerchs and L. Stewart Burlingham Complement reducible graphs Discrete Applied Mathematics, 3, 1981, pp. 163-174.

From the literature we know that...

 The RECOGNITION PROBLEM FOR THRESHOLD GRAPHS is solvable in linear time.

< ロ > < 四 > < 三 >

V. Chvátal and P. L. Hammer

Aggregation of Inequalities in Integer Programming Studies in Integer Programming, Annals of Discrete Mathematics, 1, 1977, pp. 145 - 162.

From the literature we know that...

■ The RECOGNITION PROBLEM FOR (k, ℓ) -GRAPHS is NP-complete for k or $\ell \ge 3$ and polynomial otherwise.

🔋 A. Brandstädt

Partitions of graphs into one or two independent sets and cliques. Discrete Mathematics,152(1-3), 1996, pp. 47–54.

・ロト ・四ト ・モト

From the literature we know that...

• The RECOGNITION PROBLEM FOR COGRAPHS- (k, ℓ) is solvable in polynomial time.

R. Bravo and S. Klein and L. Nogueira Characterizing (k, ℓ)-partitionable cographs Eletronic Notes in Discrete Mathematics, 22, 2005, pp. 277–280.

• III + • III + •

Applications

(日) (部)(モン(モ)) 花

Structural Characterizations of Cographs-(2, 1)

Definition 6

Let x, y be vertices. We say that they have nested neighborhoods if $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)$.

Proposition 7

A cograph-(2,1) is a cograph that can be partitioned into a bipartite graph B and a clique K.

Proposition 8

If G = (V, E) is a cograph-(2,1), then each connected component of B is a biclique.

Applications

(日) (部)(モン(モ)) 花

Structural Characterizations of Cographs-(2, 1)

Definition 6

Let x, y be vertices. We say that they have nested neighborhoods if $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)$.

Proposition 7

A cograph-(2,1) is a cograph that can be partitioned into a bipartite graph B and a clique K.

Proposition 8

If G = (V, E) is a cograph-(2,1), then each connected component of B is a biclique.

Applications

2

くロト くぼり くほり くほう

Structural Characterizations of Cographs-(2, 1)

Definition 6

Let x, y be vertices. We say that they have nested neighborhoods if $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)$.

Proposition 7

A cograph-(2,1) is a cograph that can be partitioned into a bipartite graph B and a clique K.

Proposition 8

If G = (V, E) is a cograph-(2, 1), then each connected component of B is a biclique.

くロト 不得下 くまと くまと

A structural characterization

Theorem 9

Let G be a graph. Then the following are equivalent.

1 G is a cograph-(2,1).

G can be partitioned into a collection of maximal bicliques B = {B₁,..., B_l} and a clique K such that B_i = (X_i, Y_i) and V(K) is the union of non-intersecting sets K¹ and K² such that the following properties hold:

◆□▶ ◆聞▶ ◆屈▶ ◆屈▶ 三屈

A structural characterization

Theorem 9

Let G be a graph. Then the following are equivalent.

1 G is a cograph-(2, 1).

G can be partitioned into a collection of maximal bicliques B = {B₁,..., B_l} and a clique K such that B_i = (X_i, Y_i) and V(K) is the union of non-intersecting sets K¹ and K² such that the following properties hold:

◆□▶ ◆聞▶ ◆屈▶ ◆屈▶ 三屈

A structural characterization

Theorem 9

Let G be a graph. Then the following are equivalent.

1 G is a cograph-(2, 1).

2 G can be partitioned into a collection of maximal bicliques B = {B₁,..., B_l} and a clique K such that B_i = (X_i, Y_i) and V(K) is the union of non-intersecting sets K¹ and K² such that the following properties hold:

◆□▶ ◆録▶ ◆注▶ ◆注▶ 「注」の≪⊙

A structural characterization

- There are no edges between vertices of B_i and B_j for $i \neq j$;
- Let L(v) be the list of bicliques in the neighborhood of v, $\forall v \in V$. $K^1 = \{v \in K | N(v) \cap B \subseteq B_1\}$ and $K^2 = \{v \in K | L(v) \ge 2, B_i \in L(v) \Leftrightarrow B_i \subseteq N(v)\}$, where $K^{1,1} = \{v \in K^1 | vx \in E(G), \forall x \in X_1\}$ and $K^{1,2} = K^1 \setminus K^{1,1}$;
- $G[X_1 \cup Y_1 \cup K^{1,1} \cup K^{1,2}]$ is the join of threshold graphs $(K^{1,1}, Y_1)$ and $(K^{1,2}, X_1)$;
- There is an ordering $v_1, v_2, \ldots, v_{|\mathcal{K}^2|}$ of \mathcal{K}^2 's vertices such that $N(v_i) \subseteq N(v_j), \forall i \leq j \text{ and } N(v) \subseteq N(v_1), \forall v \in \mathcal{K}^1.$

◆□▶ ◆課▶ ◆注▶ ◆注▶ 二注 のQで

A structural characterization

- There are no edges between vertices of B_i and B_j for $i \neq j$;
- Let L(v) be the list of bicliques in the neighborhood of v, $\forall v \in V$. $K^1 = \{v \in K | N(v) \cap B \subseteq B_1\}$ and $K^2 = \{v \in K | L(v) \ge 2, B_i \in L(v) \Leftrightarrow B_i \subseteq N(v)\}$, where $K^{1,1} = \{v \in K^1 | vx \in E(G), \forall x \in X_1\}$ and $K^{1,2} = K^1 \setminus K^{1,1}$;
- $G[X_1 \cup Y_1 \cup K^{1,1} \cup K^{1,2}]$ is the join of threshold graphs $(K^{1,1}, Y_1)$ and $(K^{1,2}, X_1)$;
- There is an ordering $v_1, v_2, \ldots, v_{|K^2|}$ of K^2 's vertices such that $N(v_i) \subseteq N(v_j), \forall i \leq j$ and $N(v) \subseteq N(v_1), \forall v \in K^1$.

◆□▶ ◆課▶ ◆注▶ ◆注▶ 二注 のQで

A structural characterization

- There are no edges between vertices of B_i and B_j for $i \neq j$;
- Let L(v) be the list of bicliques in the neighborhood of v, $\forall v \in V$. $K^1 = \{v \in K | N(v) \cap B \subseteq B_1\}$ and $K^2 = \{v \in K | L(v) \ge 2, B_i \in L(v) \Leftrightarrow B_i \subseteq N(v)\}$, where $K^{1,1} = \{v \in K^1 | vx \in E(G), \forall x \in X_1\}$ and $K^{1,2} = K^1 \setminus K^{1,1}$;
- $G[X_1 \cup Y_1 \cup K^{1,1} \cup K^{1,2}]$ is the join of threshold graphs $(K^{1,1}, Y_1)$ and $(K^{1,2}, X_1)$;

There is an ordering $v_1, v_2, \ldots, v_{|K^2|}$ of K^2 's vertices such that $N(v_i) \subseteq N(v_j), \forall i \leq j$ and $N(v) \subseteq N(v_1), \forall v \in K^1$.

◆□▶ ◆録▶ ◆注▶ ◆注▶ 二注 のへで

A structural characterization

- There are no edges between vertices of B_i and B_j for $i \neq j$;
- Let L(v) be the list of bicliques in the neighborhood of v, $\forall v \in V$. $K^1 = \{v \in K | N(v) \cap B \subseteq B_1\}$ and $K^2 = \{v \in K | L(v) \ge 2, B_i \in L(v) \Leftrightarrow B_i \subseteq N(v)\}$, where $K^{1,1} = \{v \in K^1 | vx \in E(G), \forall x \in X_1\}$ and $K^{1,2} = K^1 \setminus K^{1,1}$;
- $G[X_1 \cup Y_1 \cup K^{1,1} \cup K^{1,2}]$ is the join of threshold graphs $(K^{1,1}, Y_1)$ and $(K^{1,2}, X_1)$;
- There is an ordering $v_1, v_2, \ldots, v_{|\mathcal{K}^2|}$ of \mathcal{K}^2 's vertices such that $N(v_i) \subseteq N(v_j), \ \forall i \leq j \text{ and } N(v) \subseteq N(v_1), \ \forall v \in \mathcal{K}^1.$

くロト くぼト くほト くほう

A nice decomposition

Theorem 10

Let G be a graph. G is a cograph-(2, 1) if and only if G is either a join of two threshold graphs or it can be obtained from the join of two threshold graphs by the applications of any sequence of the following operations:

- Disjoint union with a biclique;
- Join with a single vertex.

くロト くぼト くほト くほう

A nice decomposition

Theorem 10

Let G be a graph. G is a cograph-(2, 1) if and only if G is either a join of two threshold graphs or it can be obtained from the join of two threshold graphs by the applications of any sequence of the following operations:

- Disjoint union with a biclique;
- Join with a single vertex.

くロト くぼト くほト くほう

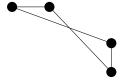
A nice decomposition

Theorem 10

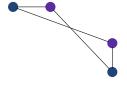
Let G be a graph. G is a cograph-(2, 1) if and only if G is either a join of two threshold graphs or it can be obtained from the join of two threshold graphs by the applications of any sequence of the following operations:

- Disjoint union with a biclique;
- Join with a single vertex.

Applications 0000000000000000



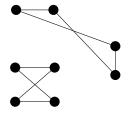
Applications 0000000000000000



◆□▶ ◆録▶ ◆注▶ ◆注▶ 「注」の久②

Applications 0000000000000000

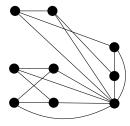
Example



- ▲日▼ ▲聞▼ ▲周▼ ▲目▼ 三面・今へ⊙

Applications 0000000000000000

Example

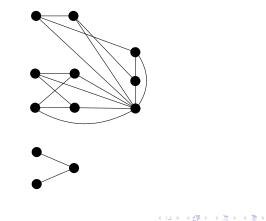


◆□▶ ◆課▶ ◆注▶ ◆注▶ 「注」のへで

Applications 0000000000000000

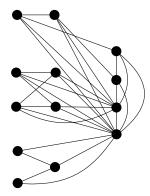
.

Example



Applications 0000000000000000

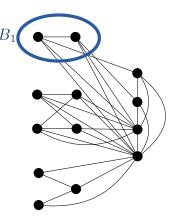
Example



◆ロ ▶ ◆聞 ▶ ◆周 ▶ ◆ 周 ▶ ○ 眉 ○ のへで

Applications 0000000000000000

Example



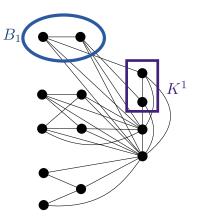
◆□▶ ◆課▶ ◆理▶ ◆理▶ 「理」のへで

Applications 0000000000000000

.

・ロト ・四ト ・モト ・モト

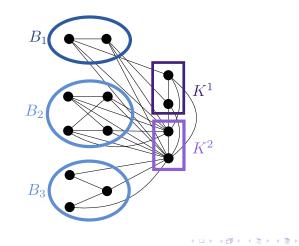
Example



Applications 0000000000000000

.

Example



・ロト ・四ト ・モト ・モト

Decomposition with the same flavor of thresholds :-)

- Efficient Recognition :-)
- Could be used for solving problems :-)
- Apparently not generalizable (at least not easily or nicely) :-(

・ロト ・師 ト ・注 ト ・注 ト

- Decomposition with the same flavor of thresholds :-)
- Efficient Recognition :-)
- Could be used for solving problems :-)
- Apparently not generalizable (at least not easily or nicely) :-(

・ロト ・師 ト ・注 ト ・注 ト

- Decomposition with the same flavor of thresholds :-)
- Efficient Recognition :-)
- Could be used for solving problems :-)
- Apparently not generalizable (at least not easily or nicely) :-(

・ロト ・師 ト ・注 ト ・注 ト

- Decomposition with the same flavor of thresholds :-)
- Efficient Recognition :-)
- Could be used for solving problems :-)
- Apparently not generalizable (at least not easily or nicely) :-(

くロト 不得下 くまと くまと

Definition

Definition 11

Let \mathcal{G} be a class of graphs. A graph G = (V, E) is a probe graph if its vertex set can be partitioned into a set of probes P and an independent set of nonprobes N, such that G can be embedded in a graph of \mathcal{G} by adding edges between certain nonprobes.

・ロト ・師 ト ・ モト ・ モト

Probe Graphs

If (P, N) is given and G is a probe graph, then
G = (P + N, E) is called *partitioned probe graph of* G.

- partitioned probe graph of $\mathcal{G}=\operatorname{PP-}\mathcal{G}$

・ロト ・四ト ・モト ・モト

Probe Graphs

- If (P, N) is given and G is a probe graph, then G = (P + N, E) is called *partitioned probe graph of* G.
- Partitioned probe graph of $\mathcal{G} = \operatorname{PP-}\mathcal{G}$

From the literature we know that...

■ The PROBE COGRAPH is solvable in polynomial time.

< (1) > < (7) >

H. N. de Ridder On probe classes of graphs Ph.D. thesis, 2007.

・ロト ・師 ト ・ モト ・ モト

From the literature we know that...

- The PP-(k, ℓ) is NP-complete for k² + ℓ² ≥ 8 and polynomial otherwise.
- S. Dantas, L. Faria, C. M. H de Figueiredo, R. B. Teixeira *The generalized split problem* Electronic Notes in Discrete Mathematics, 44, 2013, pp. 39 -45.

From the literature we know that...

- The PROBE (*k*, *ℓ*) is NP-complete for *k* + *ℓ* ≥ 3 and polynomial otherwise.
- S. Dantas, L. Faria, C. M. H de Figueiredo, R. B. Teixeira The (k, l) unpartitioned probe problem NP-complete versus Polynomial dichotomy. Submitted to IPL, 2014.

・ロト ・四ト ・ヨト

2

・ロト ・御 ト ・ 思ト ・ 思ト …

PP-COGRAPH-(2, 1)

Given a graph G = (P + N, E). Is there a cograph-(2,1) G' = (P + N, E') such that $E' = E \cup \{xy | x, y \in N\}$ for certain $x, y \in N$?

Theorem 12

PP-COGRAPH-(2,1) can be solved in polynomial time.

Main ingredient:

Theorem 13

PP-JOIN OF TWO THRESHOLD GRAPHS *can be solved in polynomial time.*

◆□▶ ◆聞▶ ◆屈▶ ◆屈▶ 三屈

PP-COGRAPH-(2, 1)

Given a graph G = (P + N, E). Is there a cograph-(2,1) G' = (P + N, E') such that $E' = E \cup \{xy | x, y \in N\}$ for certain $x, y \in N$?

Theorem 12

PP-COGRAPH-(2, 1) can be solved in polynomial time.

Main ingredient:

Theorem 13

PP-JOIN OF TWO THRESHOLD GRAPHS *can be solved in polynomial time.*

2

くロト くぼり くほり くほう

PP-COGRAPH-(2, 1)

Given a graph G = (P + N, E). Is there a cograph-(2,1) G' = (P + N, E') such that $E' = E \cup \{xy | x, y \in N\}$ for certain $x, y \in N$?

Theorem 12

PP-COGRAPH-(2, 1) can be solved in polynomial time.

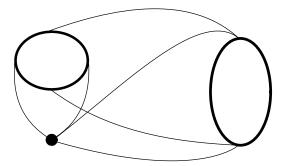
Main ingredient:

Theorem 13

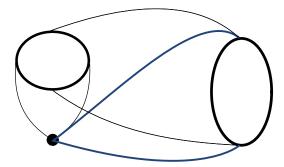
PP-JOIN OF TWO THRESHOLD GRAPHS *can be solved in polynomial time.*

◆□▶ ◆課▶ ◆注▶ ◆注▶ 二注: のへで

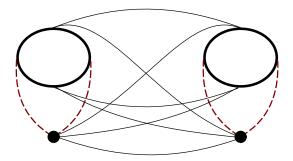
◆□▶ ◆課▶ ◆注▶ ◆注▶ 二注: のへで



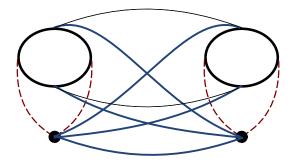
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● ● ●



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● ● ●



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● ● ●



< ID > < IP >

PP-COGRAPH-(2, 1)

Putting everything together:

- Easy to identify probe universal vertices
- Easy to identify probe isolated bicliques
- Easy to find an induced partition
- Solve 2 instances of PP-THRESHOLD

イロト 不得下 イヨト イヨト

Definition

GRAPH SANDWICH PROBLEM FOR PROPERTY Π - (Π - SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$ and that G satisfies Π ?

If such a graph exists, it is called sandwich graph.

M.C. Golumbic, H. Kaplan and R. Shamir Graph sandwich problems. Journal of Algorithms, 19, 1995, pp. 449–473

・ロト ・何ト ・ヨト ・ヨト

Definition

GRAPH SANDWICH PROBLEM FOR PROPERTY Π - $(\Pi$ - SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$ and that G satisfies Π ?

If such a graph exists, it is called *sandwich graph*.

M.C. Golumbic, H. Kaplan and R. Shamir Graph sandwich problems. Journal of Algorithms, 19, 1995, pp. 449–473

くロト くぼり くほり くほう

Definition

GRAPH SANDWICH PROBLEM FOR PROPERTY Π - $(\Pi$ - SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$ and that G satisfies Π ?

If such a graph exists, it is called *sandwich graph*.

M.C. Golumbic, H. Kaplan and R. Shamir Graph sandwich problems. Journal of Algorithms, 19, 1995, pp. 449–473

Definition

GRAPH SANDWICH PROBLEM FOR PROPERTY Π - $(\Pi$ - SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$ and that G satisfies Π ?

If such a graph exists, it is called *sandwich graph*.

M.C. Golumbic, H. Kaplan and R. Shamir Graph sandwich problems. Journal of Algorithms, 19, 1995, pp. 449–473.

◆□▶ ◆録▶ ◆注▶ ◆注▶ ─ 注 − のへ⊙

JOIN OF TWO THRESHOLDS-SP

JOIN OF TWO THRESHOLDS GRAPH SANDWICH PROBLEM-(JTT-SP)

Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E$ and that G is a join of two threshold graphs?

JOIN OF TWO THRESHOLDS-SP

JOIN OF TWO THRESHOLDS GRAPH SANDWICH PROBLEM-(JTT-SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$ and that G is a join of two threshold graphs?

JOIN OF TWO THRESHOLDS-SP

JOIN OF TWO THRESHOLDS GRAPH SANDWICH PROBLEM-(JTT-SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$ and that G is a join of two threshold graphs?

.

・ロト ・回ト ・注ト ・ヨトー

JOIN OF TWO THRESHOLDS-SP

Theorem 14

JTT-SP is NP-complete.

Proof's Idea. Polynomial-time reduction from the NP-complete problem MONOTONE NAE-3SAT.

ā

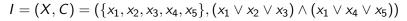
・ロト ・四ト ・モト ・モト

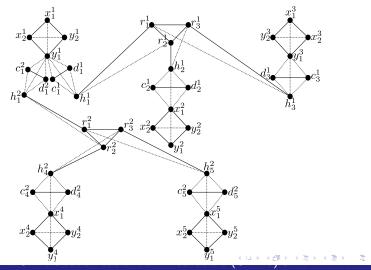
JOIN OF TWO THRESHOLDS-SP

Theorem 14

JTT-SP is NP-complete.

Proof's Idea. Polynomial-time reduction from the NP-complete problem MONOTONE NAE-3SAT.





・ロト ・御 ト ・ 思ト ・ 思ト …

COGRAPH-(2,1) - SP

COGRAPH-(2, 1) GRAPH SANDWICH PROBLEM-(COGRAPH-(2, 1)-SP)

Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a cograph-(2, 1) G = (V, E) such that $E^1 \subseteq E \subseteq E^2$?

COGRAPH-(2,1) - SP

COGRAPH-(2, 1) GRAPH SANDWICH PROBLEM-(COGRAPH-(2, 1)-SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a cograph-(2, 1) G = (V, E) such that $E^1 \subseteq E \subseteq E^2$?

- TE

くロト くぼり くほり くほう

COGRAPH-(2,1) - SP

COGRAPH-(2, 1) GRAPH SANDWICH PROBLEM-(COGRAPH-(2, 1)-SP) Input: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a cograph-(2, 1) G = (V, E) such that $E^1 \subseteq E \subseteq E^2$?

.

・ロト ・回ト ・モト ・モト

Final Result

Theorem 15

COGRAPH-(2,1)-SP is NP-complete.

Proof's Idea. Polynomial-time reduction from the NP-complete problem JTT-SP.

ā

・ロト ・回ト ・モト ・モト

Theorem 15

COGRAPH-(2, 1)-SP is NP-complete.

Proof's Idea. Polynomial-time reduction from the NP-complete problem JTT-SP.

A characterization theorem 00000

ā

・ロト ・四ト ・モト ・モト

Full dichotomy

$k \setminus \ell$	0	1	2	3	4	
0	-	Р	Р	NP-c	NP-c	
1	Р	Р	NP-c	NP-c	NP-c	
2	Р	NP-c	NP-c	NP-c	NP-c	
3	NP-c	NP-c	NP-c	NP-c	NP-c	
4	NP-c	NP-c	NP-c	NP-c	NP-c	
:	:	:	:		:	•

Table: Dichotomy P x NP-c of COGRAPH- (k, ℓ) -SP.

A characterization theorem

7

Characterization, probe and sandwich problems on a generalization of threshold graphs

Vinicius F. dos Santos Universidade Federal de Minas Gerais (UFMG)

Joint work with Fernanda Couto, Luerbio Faria, Sylvain Gravier and Sulamita Klein

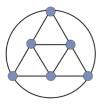
February, 2019

イロト 不得下 イヨト イヨト

LAGOS 2019

Latin & American Algorithms, Graphs and Optimization Symposium

Belo Horizonte, Brazil, June 2nd - 7th



< □ > < □ > < □ > < □ > < □ > < □ > = □

ABC	UT	COMMITTEES	INVITED SPEAKERS	IMPORTANT DATES	SUBMISSION	REGISTRATION	VENUE & TRAVEL INFORMATION	CALL FOR PAPERS

