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Ĺıvia S. Medeiros Fabiano S. Oliveira
State University of Rio de Janeiro

Brazil

Jayme L. Szwarcfiter
Federal University of Rio de Janeiro and

State University of Rio de Janeiro
Brazil

1 / 50



Purpose

The problem of counting interval sizes of an interval graph

Open Problems

Conjectures
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Interval Graph and Interval Model

Interval graph G : Intersection graph of intervals I in a
real line

Interval model M : Collection of intervals I
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Interval Order

Partial order (order): P(X ,≺)

Interval order: X = set of intervals Ii , s.t.
Ii ≺ Ij iff Ii lies entirely at the left of Ij
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Our World

INTERVAL GRAPHS

INTERVAL ORDERS
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Interval Count

For a model M of an interval graph G ,
interval count of M ,
IC (M) = number of distinct interval sizes in M

IC (G ) = {minIC(M)|IC (M) is a model of G}

Similarly, define
interval count, IC (P) of an order P
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Example

IC(P) = 3

IC(G) = 2
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The Problem

Given a graph G (an order P , determime IC (G ) (IC (P))

First introduced by Ronald Graham, in late 70’s
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A quotation about the problem

The classes k-LengthINT [graphs having interval
count k] were introduced by Graham as a natural
hierarchy between unit interval graphs and interval
graphs (. . . ). Even after decades of research, the only
results known are curiosities that illustrate the
incredibly complex structure of such a class, very
different from the case of unit interval graphs.

by Pavel Klavik
Extension Properties of Graphs and Structures
Ph.D. Thesis, Charles University, 2017 (page 365)
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IC (G ) = 1

Theorem:
(i) IC (G ) = 1 iff G is a unit interval graph
(ii) G is a unit interval graphs iff it does not contain induced
claws

Similarly for orders
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Complexity of finding the IC parameter

Given a graph G and an integer k > 0, decide if IC (G ) ≤ k

Polynomial time (linear) if k = 1.
Open for any fixed k ≥ 2.
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A Lower Bound
NESTED INTERVALS

Let P = (X ,≺) be an order.
Define
nested relation: ⊂A (P)

b ⊂A y iff ∃a, b, c , y ∈ X s.t.
a ≺ b ≺ c and y ||{a, x , b}

b is forced to be properly included in y

a b c

y

Then: IC (P) > 1 13 / 50



k-nested intervals

P(X ,≺) s.t.

x1 ⊂A x2 ⊂A x3 . . . ⊂A xk+1

The intervals x1, . . . , xk+1 are k-nested

The nested height of P(X ,≺):

maxk |P contains a sequence of k−nested intervals
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Lower Bound

For and order (P ,≺),

IC (P) ≥ nested height(P)

The nested height can be found in polynomial time:
Cerioli, Oliveira and Szwarcfiter (2011)

Linear time:
Klavik (2017)
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IC (G ) = 1

G is claw-free iff IC (G ) = 1

a b c

y

16 / 50



Increasing interval lengths

Caterpillars, threshold graphs → IC (G ) ≤ 2
(Leibowitz 1978)

Starlike-threshold → IC (G ) ≤ 2
(Cerioli and Szwarcfiter (2006)

Generalized threshold graphs → IC (G ) ≤ 2
(Cerioli, Oliveira and Szwarcfiter 2014)

Trivially perfect graphs → IC (G ) ≤ k
(Cerioli, Oliveira and Szwarcfiter 2011)

Extended bull-free graphs → IC (G ) ≤ k
(Cerioli, Oliveira and Szwarcfiter 2011)
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Increasing interval lengths

...

Trivially Perfect

bull

extended bull
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NON-Intuition

Let P = (X ,≺) be an interval order, IC (P) = 2
Wlog, let 1 be the least interval size in a model for P . Define

θ(P) = {α ∈ <|α > 1 ∧ ∃ model {1, α} for P}

Example:
P is the order satisfying graph K1,t+2, t ≥ 1

⇒ θ(P) = (t,∞)

Question:
Is θ(P) always unbounded ?
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NON-Intuition

Conjecture: θ(P) is unbounded.

Answer: Not true !

Theorem (Fishburn 1984):
Let P be the order as below. Then θ(P) = (1, 2)
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NON Intuition

INTUITION: θ(P) is continuous !
ANSWER: No !

Theorem (Fishburn 1984)
For each integer k ≥ 2, there exists an order P = (X ,≺) with
IC (P) = 2, such that

θ(P) = (2− 1/k , 2) ∪ (k ,∞)
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NON Intuition

Moreover, the number of disjoint intervals can be arbitrary !

Theorem (Fishburn 1984)
For each integer k ≥ 2, there exists an order P = (X ,≺) with
IC (P) = 2, such that

θ(P) = (k , 2k − 1) ∪ (2k − 1,∞)

Corollary: For each integer m ≥ 2, there is an order
P = (x ,≺) with IC (P) = 2, such that θ(P) is the union of m
disjoint open intervals
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NON-INTUITION

REMOVAL OF A VERTEX

CONJECTURE (Graham): For a graph G and a vertex
v ∈ V (G ), if IC (G ) = k + 1 then IC (G − v) = k + 1 or k .

Answer:
True, if k = 2, and false otherwise (Leibowicz 1978)

Leibowicz described examples of a graph whose interval count
decreases by 2, by removing one vertex !

Conjecture (Trotter): IC (G ) can decrease arbitrarily, by
removing one vertex.

ANSWER: OPEN
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Positive results

RESTRICTED: Two sizes with a given size partition

Given a graph G and a bipartition V1 ∪ V2 = V (G ) decide if
G admits a model with two interval sizes, such that, the
intervals of V1 have the same size, and the same applies to V2.

Can be solved in polynomial time
(Joos, Lowesnstein, Oliveira, Rautenbach, Szwarcfiter (2014).

However: It employs linear programming

Questions:
1) Is there a “purely” combinatorial algorithm ?
2) Can the method be extended, say, for a 3-partition ?
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Positive results

{0, 1}-Models

Theorem (Skrien 1984): Let S be the set of simplicial vertices
of a graph G . Then G admits a model using only interval sizes
0 and 1 iff there are orientations O1 of G \ S and O2 of G ,
such that

O1 ∪ O2 is a transitive orientation

O1O2 ∪ O2O1 ∪ O2O2 ⊂ O2,
where AB denotes the set of pairs ab, such that ax ∈ A
and xb ∈ B

It leads to an algorithm for constructing {0, 1} models, if
existing.
Complexity: O(n3)
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Positive results

{0, 1}-Models

Forbidden subgraph chracterization:

Theorem (Rautenbach and Szwarcfiter 2012):
G admits a {0, 1}-Model iff G does not contain any of the
following induced subgraphs:

(a) (b) (c)

(d) (e) (f)

In addition, they described a linear time algorithm for
constructing a {0, 1}-model of G , if existing.
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Positive results

{0, 1}-Models for orders

Forbidden suborder characterization:

A vertex is co-simplicial if it is simplicial in the
co-comparability graph of the order.

Theorem (Boyadzhiyska, Isaak, Trenk 2017): The following
are equivalent for an order P :

P admits a {0, 1}-model.

In each 3 + 1 suborder of P , the middle element of the
chain is co-simplicial.

P does not contain any of the following induced suborders.
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Forbidden Suborders
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Positive results

(1, 2)-Models for orders

Boyadzhiyska, Isaak, Trenk (2017)
Additionally described a characterization for the orders
admitting an (1, 2)-model.
Moreover, a polynomial time construction of the corresponding
models.

The proof and construction employ an accordingly defined
weighted order.
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Negative results

Pe’er and Shamir (1997) proved the following hardness result,
related to the interval count problem:

Given an interval graph G and a pre-described length ∈ N for
each vertex, it is NP-complete to decide if G admits a
representation such that the interval corresponding to each
vertex has its pre-described length.
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Containment relations of two length models of graphs

Let a, b ∈ <, a < b

Denote LEN(a, b) = class of graphs admitting an (a, b)-model.

NATURAL QUESTION:
Given classes LEN(a, b) and LEN(a′, b′),
is LEN(a, b) ⊆ LEN(a′, b′) ?
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A simple containment case

Lemma (Scaling Lemma):

Let a′, a 6= 0 and b
a

= b′

a′

Then LEN(a′, b′) = LEN(a, b).

Proof: To transform an (a′, b′)-model into an (a, b)-model:
multiply the model by a

a′

and
To transform an (a, b)-model into an (a′, b′):
multiply by a′

a

32 / 50



NON-INTUITION ?

What about the possible inclusions between LEN(a′, b′) and
LEN(a, b),
for a < b and a′ < b′

We have proved that there are no containments between any
pairs of such classes of graphs,
except the following simple special case:

Lemma: G ∈ LEN(a, b) iff G ∈ LEN(ka, kb),
for all k > 0.
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LEN(0, k) and LEN(a, b)

Theorem: LEN(0, k) 6⊆ LEN(a, b)
and LEN(a, b) 6⊆ LEN(0, k)
for all k , a > 0

k

...

b + 2

Proof: First, let a ≥ 1.

Let G ∈ LEN(0, k), be a graph whose model contains the
above model, as a submodel.
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LEN(0, k) and LEN(a, b)

The model contains b + 2 intervals of size 0,
and an interval of size k , universal to those of size 0.
At least b of those b + 2 intervals are nested to the universal
interval
Suppose there is an (a, b)-model for this graph
The nested intervals have size a > 0, and the universal interval
size b
Since there are b nested intervals of size a each,
the universal interval must have size > ab, a contradiction,
That is, G 6∈ LEN(a, b)
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LEN(0, k) and LEN(a, b)

a

b

Conversely,
Let G ∈ LEN(a, b), be a graph whose model contains the
above as a submodel
The model is basically unique, up to reflexions.
G contains an induced P5, and a vertex w universal to the P5.
The middle vertex v of the P5 cannot be represented
by a 0-length interval, because it is not simplicial.
Therefore, in a LEN(0, k)-model of G , v has length b.
But v is nested to w
Therefore w must have length > b, a contradiction.
Hence, G 6∈ LEN(0, k)
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LEN(0, k) and LEN(a, b)

Let 0 < a < 1

By the Scaling Lemma and using the first part of the proof,
LEN(0, k) 6⊆ LEN(1, b/a) and LEN(1, b/a) 6⊆ LEN(0, k),
Again by the Scaling Lemma, LEN(a, b) =LEN(1, b/a)
The result follows
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LEN(a′, b′) and LEN(a, b), a, b 6= 0
Theorem: LEN(a′, b′) 6⊆ LEN(a, b),
for all rational 0 < a′ < b′, 0 < a < b, such that b′

a′
6= b

a

First: assume a, a′, b, b′ natural numbers, and b′

a′
< b

a
.

Outline of the proof LEN(a′, b′) 6⊆ LEN(a, b):

Build an (a′, b′)-model M ′, as a function of a′, b′, a, b.
Let G be the graph associated to M ′, then G ∈ LEN(a′, b′).
Next, prove that G 6∈ LEN(a, b).
In the scheme, there are single bar intervals, double and triple
bars intervals. The single bar ones correspond just to regular
intervals in an interval model of a graph. The double and
triple bar intervals are in fact hyperintervals, and correspond to
sets of special intervals. These sets are depicted in the figure.
This completes the description of the model.
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LEN(a′, b′) and LEN(a, b), a, b 6= 0
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Model M ′ satisfies the following constraints:

r(xi )− `(xi ) = a′, for all 0 ≤ i ≤ b + 1

r(yi )− `(yi ) = b′, for all 1 ≤ i ≤ a

`(xi+1) = r(xi ), for all 0 ≤ i ≤ b

`(y1) = r(x0) + ε and `(yi+1) = r(yi ) + ε,

for all 1 ≤ i < a, where 0 < ε < ba′−ab′

a

From the constraints it follows that r(ya) = `(xb+1)
Therefore, the yi -intervals all lie between `(x1) and r(xb),
as suggested by the scheme.
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G ∈ LEN(a′, b′)\ LEN(a, b)

Model M ′ is an (a′, b′)-model. Let G be a graph satisfying it.
Show that G 6∈ LEN(a, b). Suppose the contrary, and let M
be an (a, b)-model for G . The following must hold for M :

yi is the center of a claw, so it must have length b. for all
1 ≤ i ≤ a.

xi is adjacent to the center of a P5, but not to the other
vertices of the P5. So, it must be nested and therefore
has length a, for all 1 ≤ i ≤ b.

r(xb)− `(x1) ≤ ab and r(ya)− `(y1) > ab.

From the last condition, it follows:
r(xb)− `(x1) < r(ya)− `(y1), implying that the intervals
y1, . . . , ya cannot lie between x0 and xb+1, contradiction.
Hence no such model can exist.
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The remaining cases
The case b′

a′
> b

a
is similar.

It requires the use of a different model, shown below:
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The result can be extended to arbitrary rational numbers, by
using the Scaling Lemma and least common multiples.

41 / 50



OPEN PROBLEMS

PROBLEM 1:
Extend the result of LEN(a′, b′) 6⊆ LEN(a, b) to possibly allow
a′, b′, a, b to be irrationals.
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OPEN PROBLEMS

PROBLEM 2 (Fishburn): For an integer k ,
determine the least size of the ground set of an order,
having interval count at least k > 1. That is, let
σ(k) = min{|X | s.t. ∃P(X ,≺), IC (P) ≥ k}

Question:
σ(k) = ?

Conjecture (Fishburn 1985):
For all k > 1
σ(k) = 3k − 2.
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OPEN PROBLEMS

Fishburn proved the conjecture true, in general, for k ≤ 7,
and open for k > 7.

Special cases: We proved the conjecture holds for some
restricted classes of orders.
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OPEN PROBLEMS

PROBLEM 3:
Given a graph G and fixed reals a, b, 0 ≤ a < b,
Does G ∈ LEN(a, b) ?
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OPEN PROBLEMS

PROBLEM 4:
Given a k-partition of the vertices of an interval graph G , is
there a model for G , such that each interval size class
corresponds to a part of the partition ?
In particular, what about k = 3 ?
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OPEN PROBLEMS

PROBLEM 5: Arc count
Given a circular-arc graph G , what is the least number of
distinct arc sizes in a circular-arc model of G ?
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THANK YOU
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