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1 Interval Subclasses Recognition

Presented by Jayme Luiz Swarcfiter (jayme@cos.ufrj.br).

Given a graph G, we say that G is an interval graph if G is the intersection graph of intervals in R. And given

a partial order P = (X,≺), we say that P is a interval order if X ca be related to a set of intervals such that

I ≺ I ′ if and only if I lies entirely to the left of I ′, for every I, I ′ ∈ X , I 6= I ′. Given a graph G (partial order

P ), we denote by IC(G) (IC(P )) the minimum number of differently sized intervals that produce G (P ). For a

positive value k > 1, let σ(k) be the minimum size of the ground set of a partial order P such that IC(P ) ≥ k.

In 1985, Fishburn conjectures the following.

Conjecture 1 For every k > 1, we get that σ(k) = 3k − 2.

He proved that it holds for k ≤ 7, but the conjecture is still open for every value bigger than 7.

Given positive integers a and b, we define LEN(a, b) as the class of graphs that can be represented by intervals

of size a and b, where 0 < a < b.

Question 1 Can one recognize in polynomial time the graph class LEN(a, b)?

The question above is answered positively for LEN(0, 1) and LEN(1, 2). In addition to these, one can

consider the problem where, given a k-partition of G, one has to decide whether there exists an interval model for

G such that the partition defined by the different interval sizes coincide with the given partition. Observe that a

positive answer implies that IC(G) ≤ k, but not the contrary. This problem is open even for k = 3. Finally, we

mention that many of the investigated aspects can be adapted to arc-circular graphs and the related problems on

these graphs are largerly open. However, it is expected that these problems will be much harder on arc-circular

graphs, given that already the unitary arc-circular graphs differ from the proper arc-circular graphs, which is not

the case for intervals.
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2 Coloring games

Presented by Nicolas Martins (nicolasam@lia.ufc.br).

Given a graph G and an interger k, a coloring game is usually defined as a game where two players (Alice

and Bob) alternate coloring the vertices of G in a proper way using k colors; the objetive of Alice is to be able to

finish the coloring, while Bob’s objective is to stop Alice from doing so. There are many variations of this kind

of problem (for instance, Alice and Bob might be restricted to applying the greedy strategy). Here, we propose

a different kind of game, where Bob’s turn consists of, instead of coloring a vertex, adding an edge to G. The

objectives are the same and many questions can be posed in this context. To begin with, we would like to answer

the following questions:

Question 2 What is the complexity of deciding whether Alice has a winning strategy?

A natural variation is, given also two other intergers a and b, decide whether there is a winning strategy for

Alice when Alice colors a vertices of G, and Bob is allowed to add at most b edges to G each turn.

Question 3 What is the complexity for some fixed values of k, a and b?

Up to our knowledge, this is a newly defined type of game, i.e., no previously studied version allows for

modifications of G.

3 Dynamic Optimality

Prestend by Victor Campos (campos@lia.ufc.br).

Given a grid G with n columns and m rows, denoted by Gm×n, and a subset S ⊆ V (G), we say that S is

arboreally satisfied if, for every x, y ∈ S, either x and y lie on the same row or column, or there exists z ∈ S

which lies within the subgrid of G having x and y as opposed corner vertices (this is called the rectangle (x,y)). If

these conditions are not satisfied for a pair x, y, we say that (x, y) is unsatisfied.

The offline problem consists of, given a grid G = Gm×n, and a subset S ⊆ V (G) containing exactly one

vertex of each row, find the smallest S′ ⊆ V (G) that is arboreally satisfied and that contains S. We denote the size

of such a smallest subset by OPTS . Here we are interested in the online version of the problem, i.e., the version

where at each time stamp, only one row is revealed together with the vertex of S lying on that row.

The greedy algorithm applied to the online version works as follows. Given the new row i and the vertex

(i, j) of S lying in that row, for each new unsatisfied rectangle. Observe that this must contain vertex (i, j). The

following conjectures have been proposed:

Conjecture 2 There exists an online algorithm that obtains a solution S′ such that |S′| = O(OPTS).

Conjecture 3 The greedy algorithm satisfies Conjecture 2.
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The best know result says that the greedy algorithm obtains a solution S′ with |S′| = O(log n ·OPTS) (recall

that n is the number of columns). Also, the complexity of the original offline problem is unknown, but it is known

to be NP-complete when the restriction of S having exactly one vertex per row is lifted.

An approach to the problem has been to consider only a subset of the rectangles. A rectangle (x, y) with

x = (i, j) and y = (i′, j′) is called positive if i′ < i and j < j′; and it is called negative if i′ < i and j < j′.

We say that S is �-satisfied if it contains no positive unsatisfied rectangle; similarly, we say that S is �-satisfied

if it contains no negative unsatisfied rectangle. One can apply the greedy algorithm in an analogous way to obtain

a �-satisfied solution S′ ⊇ S, as well as a �-satisfied solution S′′; we denote |S′|, |S′′| by OPT�
S , OPT

�
S ,

respectively. It is known that:

OPT�
S ≤ OPTS ; and

OPT�
S ≤ OPTS .

We propose the following online algorithm. First, we apply the �-greedy and � algorithms; then, we run the

greedy algorithm to obtain an arboreally satisfied set. We denote the size of the obtained solution by LBS . We

conjecture the following:

Conjecture 4 LBS = O(OPTS).

Conjecture 5 LB = O(log log n ·OPTS).

Conjecture 6 LBS ≥ OPTS .

Observe that if Conjectures 4 and 6 above hold, then the first two conjectures follow.

4 Decomposing E(G) into paths

Presented by Guilherme Mota (mota@ime.usp.br).

Given a graph G, a decomposition of G is a partition of E(G). The path on 5 edges is denoted here by P ′5. We

consider the following conjecture.

Conjecture 7 If G is a 5-regular graph with a perfect matching, then G admits a decomposition into P ′5’s.

It is known that if we add the constraint that G is either C3-free or C4-free, then the conjecture holds. We also

believe that the conjecture actually holds for (2d+ 1)-regular graphs with a perfect matching.

In addition to this, we mention the Gallai’s Decomposition Conjecture:

Conjecture 8 Every graph G on n vertices admits a decomposition into at most b (n+1)
2 c.

The above conjecture has been proved for graphs with maximum degree at most 5 (Bonamy and Perret’18),

and for C3-free planar graphs (Botler, Jimenez and Sambinelli).

3



5 Connected Greedy Coloring

Presented by Ana Shirley Silva (anasilva@mat.ufc.br).

Given an order (v1, . . . , vn) of the vertices of a graphG, one can colorG greedily by giving color 1 to v1, then

iteratively giving the smallest c not appearing in N(vi), for each i ∈ {2, . . . , n}. A greedy coloring is any proper

coloring obtained by applying the greedy algorithm. It is not hard to verify that there always exists an order of G

that produces a coloring with χ(G) colors. Therefore, it makes no sense to define the minimization problem, and

instead one define the Grundy number of G as the maximum integer k for which G has a greedy coloring with k

colors; it is denoted by Γ(G).

Now, we say that an order (v1, . . . , vn) is connected if G[{v1, . . . , vi}] is connected for every i ∈ {1, . . . , n}.

We then talk about connected greedy coloring and connected Grundy number, denoted by Γc(G). However, now

it is not true that there always exists a connected order that produces a coloring with χ(G) colors. Therefore,

we define the connected chromatic number of G as the minimum χc(G) for which G admits a connected greedy

coloring. One interesting aspect is that this is always at most χ(G) + 1 [3].

χ(G) ≤ χc(G) ≤ χ(G) + 1.

In the same article, they prove that it is NP-hard to decide whether χc(G) = χ(G), and more recently it has

been proved that it remains so even when restricted to Ck-free graphs, for every fixed k ≥ 3, to line graphs,

and to Pk-free graphs, for every fixed k ≥ 9 [9]. By defining χ′c(G) analogously on edges, in [9] we presented

a construction of a graph G such that χ′c(G) = χ′(G) + 1. However, the constructed graphs all are Class

1 graphs, i.e., they have chromatic index equal to ∆(G). We then ask whether there exists a graph G with

χ′(G) = ∆(G) + 1 < χ′c(G). In other words:

Question 4 Does χ′c(G) ≤ ∆(G) + 1 always hold?

If the answer for the above question is “no”, then we can also ask:

Question 5 What is the complexity of deciding whether χ′c(G) ≤ ∆(G) + 1?

6 Nash coloring continuity

Presented by Allen Ibiapina (allenr.roossim@gmail.com).

Panagopoulou and Spirakis [10] introduced the following coloring game on a graph G. Each vertex of G is a

player that has to choose a color in the set {1, . . . , n}; the payoff of v ∈ V (G) is 0 if v chooses the same color

as one of its neighbors, and it is the number of palyer that choose the same color as v (including v), otherwise.

A Nash equilibrium are states of the game that are susteinable, i.e., such that no player can increase its payoff by

changing color. Observe that such a state must be a proper coloring of G as otherwise a vertex with payoff 0 could

increase its payoff just by choosing a color not being used. Therefore, one can define a a variation of coloring that

models this game. A Nash coloring of G is a proper coloring (S1, . . . , Sk) such that every v ∈ Si has a neighbor
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in Sj , for every j such that j 6= i and |Sj | ≥ |Si|. As observed in [10], there are Nash colorings with χ(G) colors;

hence one define the Nash number of G as the maximum k for which G has a Nash coloring with k colors; it is

denoted by Nn(G).

More recently, Havet, Sampaio and myself have proved that there are graphs that admit Nash colorings only

with χ(G) and Nn(G) colors. In fact, it is not hard to verify that the graph obtained from Kn,n by removing a

perfect matching has this property. Therefore, we define the Nash spectrum of G as the set SN (G) of values k

for which G admits a Nash coloring with k colors, and we say that a graph G is Nash continuous if SN (G) =

{χ(G), χ(G) + 1, . . . , Nn(G)}. We ask whether a result similar to one proved in the context of b-colorings [2]

also holds for Nash colorings.

Question 6 Does it hold that there exists a graph G with SN (G) = S for every non-empty finite S ⊆ N− {1}?

Also, we ask the following:

Question 7 Can one decide in polynomial time whether a given graph G is Nash continuous?

7 Backbone coloring

Presented by Júlio Araújo (julio@mat.ufc.br).

LetG be a graph andH a subgraph ofG. We say that (G,H) is a pair, whereH is called backbone ofG. Given

two positive integers q and k, a q-backbone k-coloring of (G,H) is a proper k-coloring c of G for which |c(u)−

c(v)| ≥ q for every uv ∈ E(H). The q-backbone chromatic number of (G,H), denoted by BBCq(G,H), is the

minimum k for which there exists a q-backbone k-coloring of (G,H). Problems regarding backbone colourings

were first introduced by Broersma et al. [4], based on colouring problems related to frequency assignment.

It is not hard to see thatBBC2(G,H) is at most 2χ(G)−1; it suffices to use colors 1, 3, up to 2(χ(G)−1)+1 in

an optimal coloring of G. Also, observe that investigating BBC2(G,G) amounts to coloring G with χ(G) colors.

Therefore, authors usually investigate what happens when H is restricted to some graph class. In particular, in

their seminal paper the authors conjecture that:

Conjecture 9 ([4]) If G is a planar graph and F is a spanning forest of G, then BBC2(G,F ) ≤ 6.

Also, in [5] the authors conjecture:

Conjecture 10 ([5]) If G is a planar graph and M is a matching of G, then BBC2(G,M) ≤ 5.

There are many partial results for the above conjectures, but it seems we are still far from a definite answer.

In particular, there are some partial results about the circular version (the first and last colors are considered to be

adjacent) of these problems for graphs without cycles of length 4 as subgraphs (e.g. [1]). A good question would

be to restrict these questions to this subclass.
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8 Matching Cut

Presented by Ignasi Sau (Ignasi.Sau@lirmm.fr).

Consider a connected graph G. An edge-cut in a graph G is simply a subset S ⊆ E(G) such that G − S is

disconnected. Observe that if (A,B) is a partition of V (G), then the set of edges between A and B is an edge-cut.

We represent this cut by [A,B]. In this problem we are interested in deciding whether a griven graph has an

edge-cut that is also a matching; this is called a matching cut. Examples of graphs that do not have matching cuts

are the cicle on 3 vertices, and the complete bipartite graph K2,3.

It is known that deciding whether a given graph G with maximum degree at most 4 has a matching cut is

NP-complete, and that it can be done in polynomial time when ∆(G) ≤ 3 (Chvátal, 84). This is done as follows.

If G is a tree, then [v, V (G)− v] is a matching cut, where v is any leaf of G. Otherwise, starting with a minimum

cycle C, it is always possible to find the desired matching cut.

A natural generalization of this problem is to allow the vertices to be incident to at most d edges of the cut;

this is called a d-cut (observe that a matching cut is a 1-cut). Recently, Ignasi Sau and Guilheme Gomes (a Ph.D

student of Vinicius Santos that has done a 6-months internship in Montpellier) have proved that it is NP-hard to

decide whether a (2d + 2)-regular graph has a d-cut; and that it can be done in polynomial time for graphs with

maximum degree at most d+ 2. They conjecture that the remaining gap is also polynomial:

Conjecture 11 (Sau and Gomes) For every d ≥ 1, one can decide in polynomial time whether a given graph G

with maximum degree at most 2d+ 1 has a d-cut.

Related to this, one can define an internal partition of G as a partition of V (G) into (A,B) such that dA(x) ≥

dB(x) for every x ∈ A, and dB(x) ≥ dA(x) for every x ∈ B.

Conjecture 12 For every fixed r, there exists nr such that every r-regular graph with at least nr vertices admits

an internal partition.

Note that if the d-CUT problem were NP-hard for (2d− 1)-regular graphs, it would imply that Conjecture 12

is false for odd values of r, unless P = NP. Hence, it is improbable that the degree bound of 2d+2 of the hardness

result could be improved, which supports Conjecture 11.

9 Path Vertex Cover Problem

Presented by Phablo Moura (phablo@ime.usp.br).

Given a graph G, a path cover of G is a family P of vertex disjoint paths in G such that
⋃

P∈P V (P ); the

minimum size of a path cover of G is denoted by µ(G). The following conjecture has been proposed:

Conjecture 13 (Magnant and Martin’09 [8]) If G is a k-regular graph, then µ(G) ≤ n
k+1 .

Magnant and Martin also proved that it holds when k ≤ 5. The following has been proved by Reed in 96.

Theorem 1 (Reed’96 [6]) If G is a cubic connected graph, then µ(G) ≤ dn9 e.
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Reed also conjectures the following, which has been proved by Yu in 2016 [11].

Conjecture 14 If G is a cubic 2-connected graph, then µ(G) ≤ d n
10e.

The following theorem has also been proved recently.

Theorem 2 (Han’17 [7]) For every constant c and α, there exists n0 such that every dc · ne-regular graph G on

n ≥ n0 vertices admits a packing of vertex-disjoint paths of size at most bc−1c that covers all vertices of G except

at most α · n.
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