Análise no \mathbb{R}^n -Primeira prova

Alexandre Fernandes

17 de abril de 2017

 ${\bf 1.}\,$ Marque V (verdadeiro) ou F (falso) para cada uma das afirmações abaixo. (3 pontos)

a.
$$(A \cup B)' = A' \cup B' \ \forall \ A, B \subset \mathbb{R}^n \ (V)$$

b.
$$(A \cap B)' = A' \cap B' \ \forall \ A, B \subset \mathbb{R}^n \ (F)$$

c.
$$\overline{A \cup B} = \overline{A} \cup \overline{B} \ \forall \ A, B \subset \mathbb{R}^n \ (V)$$

d.
$$\overline{A \cap B} = \overline{A} \cap \overline{B} \ \forall \ A, B \subset \mathbb{R}^n \ (\ F \)$$

e.
$$int(A \cup B) = int(A) \cup int(B) \ \forall \ A, B \subset \mathbb{R}^n \ (F)$$

f.
$$int(A\cap B)=int(A)\cap int(B)\ \forall\ A,B\subset \mathbb{R}^n$$
 (V)

2. Considere as letras maiúsculas abaixo (desprovidas das extremidades). Agrupe-as em classes de figuras homeomorfas. (2 pontos)

A B C D E F G H I J L M N O P Q R S T U V X Z

Solução. Por causa de imprecisões na figura R as duas soluções a seguir são consideradas corretas:

3. Sejam $p=(1,0), q=(0,1)\in\mathbb{R}^2$. Mostre que qualquer caminho γ em \mathbb{R}^2 que conecta p a q e não passa pelo interior do primeiro quadrante tem comprimento pelos menos igual a 2. (1 ponto)

Solução. Seja $\gamma\colon [0,1]\to \mathbb{R}^2$ $\big(\gamma(t)=(x(t),y(y))\big)$ um caminho tal que $\gamma(0)=(1,0),\ \gamma(1)=(0,1)$ e $\gamma(t)$ não pertence o interior do primeiro quadrante para todo $t\in [0,1]$. Seja t_0 o supremo dos t's para os quais $\gamma(t)$ pertence ao eixox, em outras palavras, t_0 é o supremos dos t's para os quais y(t)=0. Pela continuidade da função y(t), segue que $y(t_0)=0$ e, como y(1)=1, segue que $t_0<1$. Agora, como $y(t_0)>0$ (caso $\gamma(t)$ fosse negativo para algum $t\geq T_0$, como y(1) é positivo, teríamos outro zero de y(t) entre t_0 e 1, o que contradiz a maximalidade de t_0) segue que $x(t_0)\leq 0$, pois caso contrário, para $\epsilon>0$ suficientemente pequeno, teríamos $\gamma(t_0+\epsilon)$ no interior do primeiro quadrante (absurdo!!!!). Assim, para a partição P de [0,1] dada por $0< t_0<1$ temos.

$$L(\gamma, P) = \|\gamma(t_0) - \gamma(0)\| + \|\gamma(1) - \gamma(t_0)\|$$

= $|x(t_0) - 1| + \sqrt{[x(t_0)]^2 + 1}$
\geq 1 + 1.

- **4.** Para cada $i=1,\ldots,n$ seja $\pi_i\colon\mathbb{R}^n\to\mathbb{R}$ a projeção na i-ésima coordenada; $\pi_i(x_1,\ldots,x_n)=x_i$. Prove ou dê um contra-exemplo para as seguintes afirmações:
 - a. $K\subset\mathbb{R}^n$ é compacto se, e somente se, $\pi_i(K)\subset\mathbb{R}$ é compacto para todo $i=1,\dots,n$. (2 pontos)
 - b. $C \subset \mathbb{R}^n$ é conexo se, e somente se, $\pi_i(C) \subset \mathbb{R}$ é conexo para todo $i=1,\ldots,n$. (2 pontos)

Solução. As duas afirmações acima são falsas; o contra-exemplo abaixo, dado em \mathbb{R}^2 , funciona para as duas afirmações.

