Análise no \mathbb{R}^n - Segunda prova

Alexandre Fernandes

17 de maio de 2017

1. (2 pontos) Sejam $U \subset \mathbb{R}^2$ um subconjunto aberto e conexo e $f: U \to \mathbb{R}$ uma função de classe C^1 e não constante. Mostre que existe um caminho regular (velocidade nunca se anula) de classe C^1 $\gamma: (a - \epsilon, a + \epsilon) \to U$ tal que $f \circ \gamma(t) = t$ para todo $t \in (a - \epsilon, a + \epsilon)$.

Solução. Como f não é constante e U é aberto conexo, existe um ponto $p = (x_0, y_0) \in U$ tal que $\nabla f(x_0, y_0) \neq (0, 0)$. Pela Forma Local das Submersões, existe uma bola B em \mathbb{R}^2 de centro na origem e um difeomorfismo de classe $C^1 \varphi: B \to A$ sobre um aberto $A \subset U$ de forma que

$$f \circ \varphi(x, y) = x + f(x_0, y_0) \ \forall \ (x, y) \in B.$$

Sejam $\epsilon > 0$ o raio da bola B, $a = f(x_0, y_0)$ e γ : $(a - \epsilon, a + \epsilon) \to U$ dada por $\gamma(t) = \varphi(t - a, 0)$. É fácil ver que γ satisfaz o que foi solicitado no problema.

2. (2 pontos) Sejam $U \subset \mathbb{R}^2$ um subconjunto aberto e conexo e $f, g: U \to \mathbb{R}$ funções de classe C^1 que satisfazem as equações de Cauchy-Riemann, ou seja,

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$$
 e $\frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$.

Mostre que: se a imagem da aplicação $F: U \to \mathbb{R}^2$, dada por F(x,y) = (f(x,y), g(x,y)), tem interior vazio, então f e g são funções constantes.

Solução. Se o determinante jacobiano da aplicação F não fosse nulo, pelo Teorema da Aplicação Inversa, a imagem de F conteria um aberto. Como estamos supondo que essa imagem tem interior vazio, segue que esse determinante jabobiano é nulo em todo ponto de U. Por outro lado, veja que o determinante jacobiano da aplicação F no ponto (x,y) é igual a

$$\left[\frac{\partial f}{\partial x}(x,y)\right]^2 + \left[\frac{\partial f}{\partial y}(x,y)\right]^2$$

ou ainda

$$\left[\frac{\partial g}{\partial x}(x,y)\right]^2 + \left[\frac{\partial g}{\partial y}(x,y)\right]^2.$$

Daí, segue que, f e g possuem gradientes nulos no aberto conexo U. Portanto, f e g são constantes em U.

3. (2 pontos) Seja $K \subset \mathbb{R}^4$ o subconjunto abaixo

$$\{(x, y, z, w) \in \mathbb{R}^4 \mid \sqrt{x^2 + y^2 + z^2} = w\}.$$

Seja $F: \mathbb{R}^3 \to \mathbb{R}^4$ uma aplicação diferenciável (não necessariamente de classe C^1) cuja imagem é exatamente o conjunto K. Mostre que existe um ponto $p \in \mathbb{R}^3$ em que a derivada de F se anula.

Solução. Seja $p \in \mathbb{R}^3$ um ponto tal que $F(p) = O \in K$ (O = (0,0,0,0)). Como a imagem de F está contida no conjunto K temos que a imagem da derivada $DF(p): \mathbb{R}^3 \to \mathbb{R}^4$ está contida no espaço tangente T_OK . Portanto, para concluir que DF(p) é a aplicação nula, é bastante provar que T_OK é igual a $\{O\}$. Seja $\gamma: (-r,r) \to K$ tal que $\gamma(0) = O$ e $\gamma'(0) = (v_1, v_2, v_3, v_4)$. Dessa forma, podemos escrever

$$\gamma(t) = (tx(t), ty(t), tz(t), tw(t))$$

em que x(t), y(t), z(t), w(t) são funções contínuas e

$$x(0) = v_1, \ y(0) = v_2, \ z(0) = v_3, \ w(0) = v_4.$$

Como, $\gamma(t) \in K$, $tw(t) \geq 0$ para todo $t \in (-r, r)$, logo $v_4 = w(0) = 0$. Também, como $\gamma(t) \in K$,

$$x(t)^{2} + y(t)^{2} + z(t)^{2} = w(t)^{2} \ \forall \ t \in (-r, r),$$

portanto $v_1^2+v_2^2+v_3^2=0$ e, portanto, $v_1=v_2=v_3=0$ também. Portanto, mostramos que $T_OK=\{O\}.$

4. (2 pontos) Mostre que um aberto de \mathbb{R}^n não pode ser difeomorfo a um aberto de \mathbb{R}^m se $m \neq n$.

Solução. Sejam $A \subset \mathbb{R}^m$ e $B \subset \mathbb{R}^n$ abertos. Seja $F: A \to B$ difeomorfismo com inversa $G: B \to A$. Sejam $a \in A$ e $b \in B$ pontos tais que F(a) = b e G(b) = a. Pela regra da cadeia, segue que a aplicação linear $DF(a): \mathbb{R}^m \to \mathbb{R}^n$ é um isomorfismo com inversa $DG(b): \mathbb{R}^n \to \mathbb{R}^m$. Segue, de argumentos elementares da álgebra linear, que m = n.

5. (2 pontos) Mostre que o subconjunto $G \subset M(2 \times 2, \mathbb{R})$ das matrizes de determinante igual a 1 é uma superfície de classe C^{∞} e de dimensão 3.

Solução. Seja $f: M(2 \times 2, \mathbb{R}) \to \mathbb{R}$ (função determinante) dada por

$$f\left(\begin{array}{cc} x & y \\ z & w \end{array}\right) = xw - yz.$$

Vemos que $G = f^{-1}(1)$. Portanto, para mostrar que G é superfície de classe C^{∞} e de dimensão 3, é suficiente mostrar que 1 é valor regular de f. Para tanto, observe que o gradiente de f no ponto (ou matriz) $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ é igual a (w, -z, -y, x) que não se anula para qualquer que seja a matriz de determinante igual a 1. Logo 1 é valor regular de f como desejávamos provar.