Tópicos de Matemática I - Lista 09

Data de entrega

03 de junho 2016

Nos exercícios a seguir, consideramos as esferas de \mathbb{R}^{n+1} , com centro na origem, equipadas da seguinte orientação: $\{v_1, \ldots, v_n\} \subset T_x \mathbb{S}^n$ é base positiva desse espaço tangente see $\{x, v_1, \ldots, v_n\}$ é base positiva de \mathbb{R}^{n+1} .

- 1) (**Teorema da Esfera Cabeluda**) Seja $m \in \mathbb{N}$ um inteiro par. Sejam $\nu : \mathbb{S}^m \to \mathbb{R}^{m+1}$ um campo contínuo de vetores tangentes a \mathbb{S}^m ($\nu(x) \in T_x \mathbb{S}^m$ $\forall x \in \mathbb{S}^m$). Mostre que ν possui pelo menos uma singularidade, isto é, existe $x \in \mathbb{S}^m$ tal que $\nu(x) = 0$.
- 2) Seja M variedade suave, orientada, compacta de dimensão m e sejam $f,g:M\to\mathbb{S}^m$ aplicações contínuas. Se $f(x)\neq -g(x)$ para todo $x\in\mathbb{S}^m$, então f e g possuem o mesmo grau.
- 3) Seja $f: \mathbb{S}^m \to \mathbb{S}^m$ uma aplicação contínua tal que $\deg(f) \neq (-1)^{m+1}$. Mostre que f possui pelo menos um ponto fixo.
- 4) Sejam M,N e S variedades suaves, orientadas, de mesma dimensão. Suponha que M,N são compactas e N,S conexas. Sejam $f\colon M\to N$ e $g\colon N\to S$ aplicações conínuas. Mostre que

$$\deg(g \circ f) = \deg(g) \cdot \deg(f).$$

Conclua que todo homeomorfismo $M \to M$ (M compacta, orientada e conexa) tem grau igual a ± 1 .

5) (**Desafio**) Seja $f: \mathbb{S}^m \to \mathbb{S}^m$ uma aplicação contínua de grau ímpar. Mostre que existe um par de pontos antipodais em \mathbb{S}^m cujas imagens por f são pontos antipodais de \mathbb{S}^m .