Tópicos de Matemática I - Lista 12

Aula do dia 24 de junho de 2016

Data de entrega da lista: 01 de julho 2016

Este é um estudo dirigido, o qual está contido nas páginas 85–89 do livro-texto do curso, cujo objetivo é apresentar uma prova do Teorema de Separação de Jordan-Brouwer via a Teoria do Grau de Brouwer mod 2.

Seja X uma variedade suave, conexa, compacta de dimensão n. Seja $f: X \to \mathbb{R}^{n+1}$ uma aplicação suave. Para cada $z \in \mathbb{R}^{n+1}$ fora da imagem de f, definimos o número de voltas mod 2 que f dá em torno de z como o grau f da seguinte aplicação de f em f:

$$x \mapsto \frac{f(x) - z}{\|f(x) - z\|}.$$

O número definido acima será denotado por $W_2(f,z)$.

Os exercícios de 1 a 10 abaixo compõem a Lista 12. O objetivo dos 3 primeiros exercícios abaixo é demonstrar o seguinte resultado.

Teorema 0.1. Admita que X seja o bordo de uma ∂ -variedade suave e compacta D e seja $F: D \to \mathbb{R}^{n+1}$ uma extensão suave da aplicação $f: X \to \mathbb{R}^{n+1}$. Se $z \in \mathbb{R}^{n+1}$ é uma valor regular de F que está fora da imagem de f, então $F^{-1}(z)$ é um conjunto finito com k elementos e os números $W_2(f,z)$ e k têm mesma paridade.

Os exercícios de 1 a 3 estão nas condições apresentadas no teorema acima.

- 1) Se z está fora da imagem de F, então $W_2(f,z)=0$.
- 2) Considere $F^{-1}(z) = \{y_1, \ldots, y_k\}$ e, em torno de cada y_i , seja B_i um subconjunto de D, disjunto de ∂D , difeomorfo a uma bola euclidiana de dimensão n+1, de sorte que B_i não intersecta B_j para $i \neq j$. Seja $f_i : \partial B_i \to \mathbb{R}^{n+1}$ a restrição de F a ∂B_i . Prove que

$$W_2(f,z) = W_2(f_1,z) + \dots + W_2(f_k,z) \mod 2.$$

3) Use a regularidade de z para escolher bolas B_i tais que $W_2(f_i, z) = 1$ e conclua a prova do teorema.

Daqui por diante, assumiremos que $X \subset \mathbb{R}^{n+1}$ é uma variedade suave, conexa, compacta de dimensão n+1. Nos exercícios a seguir, usaremos $W_2(X,z)$ para denotar o número de voltas mod 2 que a aplicação inclusão de X em \mathbb{R}^{n+1} dá em torno de um ponto que não está em X.

- 4) Seja $z \in \mathbb{R}^{n+1} \setminus X$. Mostre que, dado um ponto qualquer $x \in X$ e $U \subset \mathbb{R}^{n+1}$ uma vizinhança aberta de x em \mathbb{R}^{n+1} , então existe um ponto de U que pode ser conectado ao ponto z por um arco contínuo que não intersecta X.
- 5) Mostre que $\mathbb{R}^{n+1} \setminus X$ possui no máximo duas componentes conexas.
- 6) Mostre que se z_1 e z_2 pertencem à mesma componente conexa de $\mathbb{R}^{n+1} \setminus X$, então $W_2(X, z_1) = W_2(X, z_2)$.
- 7) Dados $z \in \mathbb{R}^{n+1} \setminus X$ e $v \in \mathbb{S}^n$, denote por r(z,v) a semirreta que parte de z na direção v;

$$r(z, v) = \{z + tv \mid t \ge 0\}.$$

Mostre que r(z, v) é transversal a X para quase todo $v \in \mathbb{S}^n$.

- 8) Dados $z \in \mathbb{R}^{n+1} \setminus X$ e $v \in \mathbb{S}^n$, tais que r(z,v) intersecta X tranversalmente. Seja z_1 outro ponto de r(z,v) que não pertence a X. Seja k o número de vezes que r(z,v) intersecta X entre z e z_1 . Mostre que $W_2(X,z) = W_2(X,z_1) \mod 2$.
- 9) Conclua que $\mathbb{R}^{n+1} \setminus X$ possui exatmente du
as componentes,

$${z \in \mathbb{R}^{n+1} \setminus X \mid W_2(X, z) = 0} \ e \ {z \in \mathbb{R}^{n+1} \setminus X \mid W_2(X, z) = 1}.$$

10) Teorema de Separação de Jordan-Brouwer. O complementar de uma variedade suave compacta, conexa e de codimensão 1 em \mathbb{R}^{n+1} tem exatamente duas componentes conexas; uma delas limitada.