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Abstract. Motivated by a question of Sárközy, we investigate sufficient
conditions for existence of infinite sets of natural numbers A and B such
that the number of solutions of the equation a + b = n where a ∈ A and
b ∈ B is monotone increasing for n > n0. We also examine a generalized
notion of Sidon sets. That is, sets A, B with the property that, for every
n ≥ 0, the equation above has at most one solution, i.e., all pairwise
sums are distinct.

1. Introduction

For a given set A ⊂ N0 of non-negative integers, here and throughout the

paper, the counting function A(n) is defined as the number of elements of

A not exceeding n, i.e., A(n) = |A∩{0, 1, 2, . . . , n}|. Consider the following

functions

r(A, n) =|{(a1, a2) ∈ A× A : a1 + a2 = n}|,

r1(A, n) =|{(a1, a2) ∈ A× A : a1 + a2 = n and a1 ≤ a2}|,

r2(A, n) =|{(a1, a2) ∈ A× A : a1 + a2 = n and a1 < a2}|.

A well-studied problem concerning these functions is to determine necessary

and sufficient conditions on A for their (eventual) monotonicity. Here and

throughout the paper, monotonicity refers to monotonicity in n. In other

words, for what sets A we can find an n0 such that r(A, n+ 1) ≥ r(A, n) for

all n > n0? Although the three functions look similar, and in fact |r(A, n)−
2r2(A, n)| ≤ 1 and |r1(A, n) − r2(A, n)| ≤ 1, the (partial) answers to these

questions may be quite different.

Erdős, Sárközy and Sós [3] proved that r(A, n) is eventually monotone

increasing if and only if A contains all the positive integers from a certain

point on. On the other hand, they obtained only a partial answer for r1 and

r2. In particular, they proved that if

lim
n→+∞

n− A(n)

log n
= +∞
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then r1(A, n) is not eventually monotone increasing. (This result was also

obtained independently by Balasubramanian [1].)

Also, for r2(A, n) they proved that if

A(n) = o

(
n

log n

)
then r2(A, n) cannot be monotone increasing from a certain point on.

Motivated by these results, Sárközy asked the following question in his

valuable paper on unsolved problems in number theory [8] (see Problem 4

in [8]).

Problem 1. If A,B are given infinite sets of non-negative integers, what can

one say about the monotonicity of the number of solutions of the equation

a+ b = n, a ∈ A, b ∈ B?

We can naturally rephrase this question by defining the following func-

tion.

Definition 2. The representation function for two sets A,B ⊂ N0 is

r(A,B, n) = |{(a, b) ∈ A×B : a+ b = n}|.

The main goal of the present paper is to give some sufficient conditions on

A,B for the monotonicity of this function. This new representation function

acts surprisingly different from the prequel. Our main result is as follows.

Theorem 3. For all 0 ≤ α, β < 1, 1/2 < c1, c2 ≤ 1, there exist sets

A,B ⊂ N0 such that r(A,B, n) is monotone increasing in n;

lim sup
n→∞

A(n)

nc1
= α; lim sup

n→∞

B(n)

nc2
= β.

In the next sections we develop tools to approach Theorem 3 and prove

some related results. Then we will return to the proof of Theorem 3.

2. co-Sidon Sets

Before proving Theorem 3, we introduce a generalized notion of Sidon

sets and study some of its properties. Recall that a set A ⊂ N0 is called

Sidon if r1(A, n) ≤ 1 for all n ∈ N, i.e., the sums of unordered pairs of

elements of A are all distinct. We remark that it is possible to extend the

notion of a Sidon set to a pair of sets in different ways. In this paper, we

consider the following generalization.

Definition 4. Two sets A,B ⊂ N0 are called co-Sidon if r(A,B, n) ≤ 1 for

all n ∈ N0, i.e., the sums a+ b are distinct for all (a, b) ∈ A×B.
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Note that if A,B are co-Sidon then |A ∩B| ≤ 1.

For sets A and B of integers we denote their sum set by A+B = {a+b :

a ∈ A, b ∈ B}. For simplicity if the set B is a single element b we denote

their sum set by A+ b = A+B.

When A,B are finite sets, we prove a simple but sharp result about

|A|, |B|.

Proposition 5. If A,B ⊂ {0, 1, 2, . . . , n} are co-Sidon, then

min {|A|, |B|} ≤ b
√

2nc.

Furthermore, equality can be obtained for infinitely many values of n.

Proof. Since A and B are finite (and co-Sidon) we have |A + B| = |A||B|.
Without loss of generality assume |A| ≤ |B|. Then, |A|2 ≤ |A+B|.

Clearly for an element c ∈ A + B we have 0 ≤ c ≤ 2n. However, either

0 or 2n is not an element of A + B, otherwise we would have 0, n ∈ A ∩ B
and there would be two distinct solutions to a + b = n with a ∈ A and

b ∈ B. Thus, |A+B| ≤ 2n which yields |A| ≤ b
√

2nc and the upper-bound

is established.

To see that the upper bound is best possible for infinitely many n, con-

sider the following construction for A and B. Let m ∈ N be fixed and define

A := {0,m, 2m, . . . , (2m− 1)m}

and

B := {0, 1, 2, . . . ,m− 1, 2m2, 2m2 + 1, 2m2 + 2, . . . , 2m2 +m− 1}.

Note that |A| = |B| = 2m and A + B = {0, 1, . . . , 4m2 − 1}. Therefore

A and B are co-Sidon. As A,B ⊆ {0, 1, 2, . . . , 2m2 + m − 1}, we can take

n = 2m2 +m− 1. This gives

2m =
√

4m2 ≤
√

4m2 + 2m− 2 =
√

2n <
√

4m2 + 4m+ 1 = 2m+ 1.

Hence min {|A|, |B|} = 2m = b
√

2nc. As the choice of m was arbitrary,

there are infinitely many n for which we can reach the upper bound in the

statement of the theorem. �

It is worth to compare the above result to the following theorem of Erdős

and Turán [4] on finite Sidon sets.

Theorem 6. There is an absolute positive constant c such that if n ∈ N
and A ⊂ {1, 2, . . . , n} is a Sidon set, then |A| < n1/2 + cn1/4.
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On the other hand, the best known constructions give Sidon sets of size

n1/2 for infinitely many n (see e.g. [5, 7] for details). The reduction of this

gap is a well-known hard problem.

We consider now the case where A,B are infinite co-Sidon. Defining

An = A ∩ {0, 1, . . . , n} and Bn = B ∩ {0, 1, . . . , n}, we have that An,Bn are

co-Sidon. So, by Theorem 5, for any n we have

min {A(n), B(n)}/
√
n = min {|An|, |Bn|}/

√
n ≤ b

√
2nc/

√
n ≤
√

2.

A simple example shows that we can come close to achieving this bound.

Construction 7. Let A be the set of integers which can be written in the

form
∑k

i=0 αi2
2i where αi ∈ {0, 1} and k ∈ N. Let B be the set of integers

which can be written in the form
∑k

i=0 αi2
2i+1 where αi ∈ {0, 1} and k ∈ N.

It is clear that A and B are co-Sidon and A + B = N0. It can easily be

verified that

lim inf
n→∞

A(n)√
n

= 1

lim inf
n→∞

B(n)√
n

=

√
2

2

lim sup
n→∞

A(n)√
n

=
√

3

lim sup
n→∞

B(n)√
n

=

√
6

2
Thus,

lim inf
n→∞

min {A(n), B(n)}√
n

=
√

2/2.

Comparing this with the following result of Erdős (see [9, 5]), we conclude

that infinite Sidon sets and infinite co-Sidon sets also behave differently. In

general, we have more freedom when working with co-Sidon sets.

Theorem 8. There is an absolute, positive constant c such that for any

infinite Sidon set A ⊂ N we have

lim inf
n→∞

A(n)√
n/ log n

< c.

It is also worth mentioning the following theorem of Krückeberg [6] for

infinite Sidon sets.

Theorem 9. There is a Sidon set A ⊂ N such that

lim sup
n→∞

A(n)√
n
≥
√

2/2.

The following definition will be useful for us.
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Definition 10. We call sets A,B ⊂ N0 perfect if the sum set A + B is an

interval (possibly unbounded) of consecutive integers.

The next proposition will be helpful in building new perfect co-Sidon

sets from other co-Sidon sets.

Proposition 11. Let A,B ⊂ N0 be finite perfect co-Sidon sets. Let c =

max (A) + max (B)−min (A)−min (B) + 1. Then for any k ∈ N0, the sets

A and C =
⋃k

i=0 (B + ic) are perfect co-Sidon.

Proof. Let r = min (A)+min (B). By assumption, A+B = {r, r+1, . . . , c+

r−1}. For each i, the sets A and B+ ic are co-Sidon. Furthermore, the sets

A+ (B + c) = {c+ r, c+ r + 1, . . . , 2c+ r − 1}

A+ (B + 2c) = {2c+ r, 2c+ r + 2, . . . , 3c+ r − 1}
...

A+ (B + kc) = {kc+ r, kc+ r + 1, . . . , (k + 1)c+ r − 1}

are all pairwise disjoint consecutive intervals. Therefore A and
⋃k

i=0 (B+

ic) are perfect co-Sidon with sum set {r, r + 1, . . . , (k + 1)c+ r − 1}. �

Clearly the proposition also holds for C =
⋃∞

i=0 (B + ic).

Next we characterize all infinite perfect co-Sidon sets A,B ⊂ N0 using

the mixed radix representation. Note that both the co-Sidon and perfect

properties are invariant under translation of each of the sets (i.e. addition

or subtraction by a constant), so without loss of generality we may assume

0 ∈ A ∩B.

Theorem 12. Let A,B ⊂ N0 be infinite, such that 0 ∈ A ∩ B. Then A,B

are perfect co-Sidon if and only if there exists an infinite sequence of integers

(ki)
∞
i=1 such that ∀i, ki ≥ 2 and (up to an exchange of A and B),

A =

{
∞∑
i=1

k1k2 . . . k2i−2a2i−1 : ∀j, 0 ≤ a2j−1 < k2j−1, finitely many a2i−1 non-zero

}
and

B =

{
∞∑
i=1

k1k2 . . . k2i−1a2i : ∀j, 0 ≤ a2j < k2j, finitely many a2i non-zero

}
.

Proof. A sum of the form
∑∞

i=1 k1k2 . . . ki−1ai where 0 ≤ aj < kj, and

only finitely many ai are non-zero, is precisely the so-called mixed-radix

representation with bases (k1, k2, . . . , ki, . . .). Thus the base r representation

is the special case where ki = r for all i. For any sequence (ki)
∞
i=1 of integers
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with ki ≥ 2, every non-negative integer is uniquely representable with bases

(ki).

Let (ki)
∞
i=1 be a sequence of integers such that ∀i, ki ≥ 2. Suppose A

and B are of the form determined by the bases ki as above. As every non-

negative integer is uniquely representable by with bases (ki), A and B are

co-Sidon. Also observe that

A+B =

{
∞∑
i=1

k1k2 . . . ki−1ai : ∀j, 0 ≤ aj < kj, finitely many ai non-zero

}
.

Thus A+B = N0 and therefore A and B are perfect.

Now assume that A,B are perfect co-Sidon. Unless A = B = {0}, we

can assume without loss of generality that 1 ∈ A. To show that A,B are of

the required form, we need to construct a sequence of base elements (ki)i∈N

that represents A and B as in the statement of the theorem.

Our construction of the integers ki is recursive. Let k0 = 1. For t ≥ 1

define ct = kt−1kt−2 · · · k0 and let

kt =

{
max {a : {ct, 2ct, . . . , (a− 1)ct} ⊂ A}, if t is odd

max {b : {ct, 2ct, . . . , (b− 1)ct} ⊂ B}, if t is even

Note that ∀t > 0, kt <∞. Otherwise, one of A or B contains an infinite

arithmetic progression, whose consecutive terms differ by ct. But as they

are co-Sidon, this implies that the other set is finite (in fact of cardinality

at most ct), a contradiction.

Now define two families of sets. Let A0 = B0 = {0} and for each t ≥ 1,

At =

{
t∑

i=1

k1k2 . . . ki−1ai : ∀j, 0 ≤ aj < kj and a2j = 0

}
and

Bt =

{
t∑

i=1

k1k2 . . . ki−1bi : ∀j, 0 ≤ bj < kj and b2j−1 = 0

}
.

Note that for all j, A2j = A2j−1 and B2j−1 = B2j−2. Let A∗ =
⋃∞

i=0At and

B∗ =
⋃∞

i=0Bt. It only remains to prove that A = A∗ and B = B∗. We will

use the following claim.

Claim 13. For all t ≥ 0

A ∩ {0, 1, . . . , k1 · · · kt − 1} = At

B ∩ {0, 1, . . . , k1 · · · kt − 1} = Bt.

Proof. Suppose not and let t be minimal such that the claim does not hold.

Thus there must exist an x ∈ N such that either

x ∈ (A ∩ {0, 1, . . . , k1k2 · · · kt − 1})∆At
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or

x ∈ (B ∩ {0, 1, . . . , k1k2 · · · kt − 1})∆Bt

where ∆ denotes the symmetric difference of sets. Pick a minimal such x.

Let us assume that t is odd and t ≥ 3; the proof is trivial for t = 0 or

t = 1 and similar when t ≥ 2 is even. As t is odd (and minimal) Bt =

Bt−1 = B ∩ {0, 1, . . . , k1 · · · kt−1 − 1} ⊂ B ∩ {0, 1, . . . , k1 · · · kt − 1}, thus

Bt\(B ∩ {0, 1, . . . , k1 · · · kt − 1}) is empty.

Now write

x =
t∑

i=1

k1k2 . . . ki−1ai

in the mixed-radix representation with bases (ki)
∞
i=1. Set

z =

b t
2c∑

i=0

k1 · · · k2ia2i+1

and

w =

b t
2c∑

i=1

k1 · · · k2i−1a2i.

By definition, z ∈ At, w ∈ Bt = Bt−1 and x = z + w. By the minimality

of t, Bt−1 ⊂ B, thus w ∈ B. We now distinguish the remaining three cases.

(i) Suppose x ∈ (A ∩ {0, 1, . . . k1 · · · kt − 1})\At. Since x /∈ At, we have

x 6= z, thus z ∈ A by minimality of x. Now we have that x, z ∈ A and

0, w ∈ B. But x + 0 = z + w, contradicting the fact that A and B are

co-Sidon.

(ii) Suppose x ∈ At\(A ∩ {0, 1, . . . , k1 · · · kt − 1}). As A + B = N0, we

can write x = a + b with a ∈ A, b ∈ B. Note that x ≤ k1k2 · · · kt − 1 and

this implies x /∈ A. In particular, x 6= a. We claim that x = b. If not, then

0 < a, b < x and the minimality of x implies that a ∈ At and b ∈ Bt. But

a+ b = x ∈ At, which contradicts the definition of At and Bt. Thus we may

suppose x = b, i.e., x ∈ At ∩B.

For 0 ≤ i ≤
⌊

t
2

⌋
− 1, define

α2i+1 =

{
k2i+1 − a2i+1 if a2i+1 > 0

0 if a2i+1 = 0

and

β2i+2 =

{
0 if α2i+1 = 0

1 if α2i+1 > 0.
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Let

u = (αt−10αt−4 . . . α3 − α1)(ki) =

b t
2c−1∑
i=0

k1 · · · k2iα2i+1 ∈ At−2,

v = (βt−10βt−30 . . . β20)(ki) =

b t
2c∑

i=1

k1 · · · k2i−1β2i.

By definition of kt, at

∏t−1
i=0 ki ∈ A and by minimality of t, we have u ∈ A

and v ∈ B. Clearly, u 6= at

∏t−1
i=0 ki. But u+x = at

∏t−1
i=0 ki +v, contradicting

the fact that A and B are co-Sidon.

(iii) Suppose x ∈ (B ∩ {0, 1, . . . , k1 · · · kt − 1})\Bt. Clearly x /∈ A, oth-

erwise 0, x ∈ A ∩ B which contradicts A,B being co-Sidon. Also x /∈ At,

otherwise x ∈ At ∩ B and we can continue as at the end of case (ii). Thus

x 6= z, this implies z ∈ A by the minimality of x. Also w ∈ Bt implies

x 6= w. Now 0 + x = z + w, with 0, z ∈ A and x,w ∈ B contradicting the

fact that A and B are co-Sidon. �

To complete the proof of the theorem, we must show ∀t > 0, kt ≥ 2.

Suppose that kt0 = 1. That is, ct0 = k1k2 · · · kt0−1 is in neither A nor B. But

then as A and B are perfect co-Sidon, there exist a ∈ A and b ∈ B such

that a+ b = ct0 . By assumption, a, b < ct0 . But clearly (a, b) /∈ At0 ×Bt0 as

At0 +Bt0 ⊂ {0, 1, . . . , ct0 − 1} contradicting Claim 13. �

Theorem 12 allows us to make a useful observation about the structure

of perfect co-Sidon sets.

Corollary 14. If A and B are infinite perfect co-Sidon sets then for all m ∈
N there are infinitely many n ∈ N such that {n, n+ 1, . . . , 2n+m}∩A = ∅.

Proof. As the statement remains true when we translate A or B, it suffices

to prove it for A and B with 0 ∈ A∩B. There exists an infinite sequence of

integers (ki) ∀i, ki ≥ 2 such that A and B are represented by the bases ki

as in Theorem 12. Fix m ∈ N and let t be such that 2
∏t−1

i=0 ki − 3 ≥ m and

(kt − 1)
∏t−1

i=0 ki ∈ A. Then by Theorem 12 the next element in A is exactly∏t+1
i=0 ki. Let n = (kt − 1)

∏t−1
i=0 ki + 1. Now

t+1∏
i=0

ki = kt+1 {(kt − 1) + 1}
t−1∏
i=0

ki

≥ 2

{
n− 1 +

t−1∏
i=0

ki

}
≥ 2n− 2 +m+ 3 = 2n+m+ 1.
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Thus {n, n+ 1, . . . , 2n+m} ∩A = ∅. Since A is infinite, it follows that for

every m there are infinitely many such n. �

It is natural to ask whether all co-Sidon sets A,B are subsets of per-

fect co-Sidon sets A∗, B∗. The answer turns out to be no as the following

proposition shows.

Proposition 15. The sets A = {2k : k ∈ N, k ≥ 9} and B = {3l : l ∈
N, l ≥ 9} are co-Sidon and there are no perfect co-Sidon sets A∗, B∗ such

that A ⊆ A∗ and B ⊆ B∗.

Proof. The Diophantine equation 2k + 3l = 2m + 3n with k < m and l > n

has only five solutions (see [10]); all have exponents less than 9. This implies

that A and B are co-Sidon.

Note that, for all n ≥ 29, A contains numbers between n and 2n. That

is, for all n, A ∩ {n, n + 1, . . . , 2n} 6= ∅. However, if A∗ and B∗ are perfect

co-Sidon sets such that A ⊂ A∗ and B ⊂ B∗, then according to Corollary 14

there is an n with A∗ ∩ {n, n+ 1, . . . , 2n+m} = ∅ . �

3. Representation Function

We seek to provide sufficient conditions on A and B so that the repre-

sentation function r(A,B, n) = |{(a, b) ∈ A×B : a+ b = n}| is (eventually)

monotone increasing. For C ⊂ N0 let us denote its complement C = N0\C.

It is easy to see that if either A or A is finite and either B or B is

finite then r(A,B, n) is eventually monotone. To see this, if A and B are

finite, then for all n > max (A) + max (B) we have that b ∈ B implies

n − b ∈ A and thus r(A,B, n) = |B|. Also, if A and B are finite, then for

all n > max (A) + max (B) we have r(A,B, n) = n+ 1− |A| − |B|. Finally,

if A and B are both finite then it is obvious that r(A,B, n) is eventually

monotone. So the study is non-trivial only in the case when A and A are

both infinite.

Proposition 16. Let A,B ⊂ N0 be infinite perfect co-Sidon sets such that

A+B = N0. Then, for any A′ ⊂ A and B′ ⊂ B, the representation function

r(A+B′, B + A′, n) is monotone increasing.

Proof. Note that

r(A+B′, B + A′, n) = r

(⋃
b∈B′

A+ b,
⋃

a∈A′

B + a, n

)
=

∑
a∈A′,b∈B′

r(A+ b, B + a, n)
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The second equality holds because the unions are disjoint.

From A + B = N0 it follows that (A + b) + (B + a) = N0 + a + b and

thus each summand is

r(A+ b, B + a, n) =

{
0 if n < a+ b,
1 if n ≥ a+ b.

Therefore, the representation function r(A + B′, B + A′, n) is monotone

increasing. �

It follows from Theorem 12 that sets A and B which are infinite perfect

co-Sidon exist. Since the subsets in Proposition 16 are arbitrary, we can

construct many sets A and B such that r(A,B, n) is monotone increasing.

The next theorem allows us to choose sets A and B whose representation

function is monotone and increasing and whose counting functions A(n) and

B(n) grow at a controlled rate.

Theorem 17. Let A,B ⊂ N0 be infinite perfect co-Sidon such that A+B =

N0. Let f : N0 → R be such that A(n) ≤ f(n) and for every M > 0 there

exists n0 such that for n > n0 we have f(n) < n+ 1−MA(n). Then there

exists a B′ ⊆ B such that

(A+B′)(n) ≤ f(n) for all n ∈ N0

and

(A+B′)(n) ≥ f(n)− A(n) for infinitely many n ∈ N0.

Proof. Let A and B be as in the statement and write B = {b0 < b1 < . . .}.
By assumption, b0 = 0. Let us construct B′ ⊆ B greedily as follows: set

B′0 = {0} and for i > 0 let

B′i+1 =

{
B′i ∪ {bi+1} if

(
A+ (B′i ∪ {bi+1})

)
(n) ≤ fA(n) for all n ∈ N0,

B′i otherwise.

Then let B′ =
⋃∞

i=0B
′
i. We claim that this B′ satisfies the conditions of

the theorem. By the construction,

(A+B′)(n) ≤ f(n) for all n ∈ N0.

To prove that the other inequality holds for infinitely many values of

n, we first need to show that B \ B′ is infinite. Suppose that B \ B′ is

finite, and let M = |B\B′|. Since A + B\B′ = ∪b∈B\B′(A + b) we have

(A+B\B′)(n) ≤MA(n) for every n. Now, clearly

⋃
b∈B′

(A+ b) = N0\

 ⋃
b∈B\B′

(A+ b)

 .
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It follows that
(
A + B′

)
(n) = n + 1 −

(
A + (B\B′)

)
(n) ≥ n + 1 −MA(n)

for all n. But, for large enough n, we have n + 1 −MA(n) > f(n). Then,

for large enough n we would have
(
A + B′

)
(n) > f(n), which contradicts

the construction of B′. Hence B \B′ is infinite.

Therefore, for infinitely many i, we have bi+1 /∈ B′. For such an i we

have B′i+1 = B′i. Therefore, by definition of B′i+1, there exists ni+1 such that

(A + B′i ∪ {bi+1})(ni+1) > f(ni+1). Note that ni+1 ≥ bi+1, because for all

n < bi+1, (
A+B′i ∪ {bi+1}

)
(n) =

(
A+B′i

)
(n) ≤ fA(n).

Therefore there are infinitely many n such that,

(A+B′)(n) ≥ (A+B′i)(n) ≥ f(n)− A(n).

�

Our main theorem follows as a corollary of Theorem 17. We restate it

here for easy reference:

Theorem 3. For all 0 ≤ α, β < 1, 1/2 < c1, c2 ≤ 1, there exist sets

A,B ⊂ N0 such that r(A,B, n) is monotone increasing in n;

lim sup
n→∞

A(n)

nc1
= α; lim sup

n→∞

B(n)

nc2
= β.

Proof. Suppose we are given constants 0 ≤ α < 1 and 1/2 < c1 ≤ 1 Let A0,

B0 be perfect co-Sidon sets such that A0(n) = Θ(n1/2), B0(n) = Θ(n1/2)

(e.g. Construction 7.) Let f(n) = αnc1 +d where d is a constant large enough

such that f(n) ≥ A0(n) for all n. Clearly for allm > 0 there exists an n0 such

that for n > n0, f(n) < n+1−mA0(n). By Theorem 17, there is a B′ ⊂ B0

such that (A0 + B′)(n) ≤ f(n) for all n and (A0 + B′)(n) ≥ f(n) − A0(n)

for infinitely many n. Set A = A0 +B′. Then

α = lim
n→∞

f(n)

nc1
≥ lim sup

n→∞

A(n)

nc1
≥ lim

n→∞

f(n)− A0(n)

nc1
= α.

We can construct B in the same manner. By Proposition 16, the represen-

tation function r(A,B, n) is monotone increasing. �

By modifying the previous two proofs, we can restate Theorem 3 with

either (or both) limit superiors replaced with limit inferiors. The details

are left to the interested reader. Theorem 3 gives a strong answer about the

densities of sets A and B with monotone representation function r(A,B, n).

When c1 = c2 = 1 and α, β ∈ Q we can restate Theorem 3 by replacing

the limit superiors with standard limits.
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Theorem 18. For all rational 0 ≤ α, β ≤ 1, there exist sets A,B ⊂ N0

such that A has density α, B has density β and r(A,B, n) is monotone

increasing in n.

Proof. We construct A and B using mixed radix representation to describe

its elements. Write α = p1/q1 and β = p2/q2 where pi, qi ∈ N. Set k1 = q1,

k2 = q2 and ki = 2 for all i > 2. Let A0 be the set of all integers that can

be written in the form
k∑

i=0

k1k2 · · · k2ia2i+1

where for each i, 0 ≤ a2i+1 < k2i+1. Similarly let B0 be the set of all integers

that can be written in the form

k∑
i=1

k1k2 · · · k2i−1b2i

where for each i, 0 ≤ b2i < k2i. Note that A0 and B0 are perfect co-Sidon.

Let A′ be the subset of A0 consisting of all those integers whose k1-

digit (in the mixed radix representation) lies in the set {0, 1, . . . , p1 − 1}.
As p1 ≤ q1 we must have p1 − 1 ≤ k1 − 1. Thus A′ is well-defined. Then

B = A′ + B0 is the set of all numbers whose k1-digit lies in {0, . . . , p1 − 1}
that is, B consists of the numbers congruent to 0, 1, . . . , p1 − 1 ( mod q1).

The density of this set is clearly p1/q1.

Similarly, let B′ be the subset of B0 consisting of all those integers whose

k2-digit (in the mixed radix representation) lies in the set {0, 1, . . . , p2− 1}.
Again as p2 ≤ q2 we have p2 − 1 ≤ k2 − 1 so B′ is also well-defined. A

similar argument holds when we are considering A = A0 + B′. Here, A is

the set of numbers whose k2-digit is in {0, 1, . . . , p2 − 1}. Thus A consists

exactly of the numbers less than or equal to (p2 − 1)q1 ( mod q1q2). This

follows as the base of the first digit is q1. Again it is clear that A has density

(p2q1)/(q1q2) = p2/q2.

By Proposition 16, r(A,B, n) is monotone increasing. �

Finally, we determine for which sets A,B the representation function

r(A,B, n) is eventually strictly increasing. The corresponding question for

a single set has been considered by Chen and Tang [2] who discuss when

the functions r, r1, r2 are strictly increasing. When considering two sets and

the function r, the problem turns out to be easy.

Proposition 19. Let A,B ⊂ N0, then the representation function r(A,B, n)

is eventually strictly monotone increasing if and only if A and B are finite.
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Proof. First, let us assume that r(A,B, n) is eventually strictly increasing.

We will use the trivial identity that

n+ 1 = r(N0,N0, n) = r(A,B, n) + r(A,B, n) + r(A,B, n) + r(A,B, n),

which is equivalent to

n+ 1− r(A,B, n) = r(A,B, n) + r(A,B, n) + r(A,B, n).

In the last identity the left hand side is bounded, since we assumed that

r(A,B, n) is eventually strictly increasing. Thus so is the right hand side.

Hence r(A,B, n), r(A,B, n) and r(A,B, n) are all bounded. From this it fol-

lows that r(A,N0, n) = r(A,B, n)+r(A,B, n) and r(N0, B, n) = r(A,B, n)+

r(A,B, n) are bounded. Thus A and B must be finite.

Now we assume that A and B are finite. For any n > max (A)+max (B)

we know that a ∈ A implies n− a 6∈ B and vice versa, so we can write

r(A,B, n) = n+ 1− |A| − |B|

< n+ 2− |A| − |B| = r(A,B, n+ 1)

Thus for n > max (A) + max (B) the representation function is strictly

increasing. �

4. Open Problems

A far-reaching goal would be to completely characterize co-Sidon sets.

Which co-Sidon sets are subsets of some perfect co-Sidon sets? Are two

random sets likely to be co-Sidon?

Can we completely characterize sets A,B whose representation function

is monotone increasing? Are there constructions that do not come from

perfect co-Sidon sets?
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