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Abstract

Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete

graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdős conjectured

that when L is the cycle Cn on n vertices, R(Cn,Cn,Cn) = 4n − 3 for every odd n > 3. Łuczak

proved that if n is odd, then R(Cn,Cn,Cn) = 4n + o(n), as n→ ∞, and Kohayakawa, Simonovits

and Skokan confirmed the Bondy-Erdős conjecture for all sufficiently large values of n.

Figaj and Łuczak determined an asymptotic result for the ‘complementary’ case where the

cycles are even: they showed that for even n, we have R(Cn,Cn,Cn) = 2n + o(n), as n → ∞. In

this paper, we prove that there exists n1 such that for every even n ≥ n1, R(Cn,Cn,Cn) = 2n.

Keywords: Cycles, Ramsey number, Regularity Lemma, Stability

1. Introduction

For graphs L1, . . . , Lk, the Ramsey number R(L1, . . . , Lk) is the minimum integer N such

that for any edge-coloring of KN , the complete graph on N vertices, by k colors, there exists a

color i for which the corresponding color class contains Li as a subgraph. Bondy and Erdős [4]

conjectured that if n > 3 is odd and L1, L2, L3 are Cn, the cycle on n vertices, then

R(Cn,Cn,Cn) = 4n − 3. (1)

Łuczak [11] showed that if n is odd, then R(Cn,Cn,Cn) = 4n + o(n), as n → ∞, and Ko-

hayakawa, Simonovits and Skokan [9] proved that there exists an n0 such that (1) holds for every

n odd with n > n0.

The case when n is even differs from the case when n is odd. Figaj and Łuczak [6] proved

that for α1, α2, α3 > 0,

R(C2⌊α1n⌋,C2⌊α2n⌋,C2⌊α3n⌋) = (α1 + α2 + α3 +max{α1, α2, α3} + o(1))n,
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as n→ ∞. In particular, for n even, we have

R(Cn,Cn,Cn) = 2n + o(n), as n→ ∞.

For the path Pn on n vertices this implies that

R(Pn, Pn, Pn) = 2n + o(n), as n→ ∞.

Slightly later, independently, Gyárfás, Ruszinkó, Sárközy, and Szemerédi [7] proved a similar

but more precise result for paths: there exists an n0 such that for n > n0,

R(Pn, Pn, Pn) =

{

2n − 1, n odd

2n − 2, n even.

In this paper we prove the following theorem.

Theorem 1. There exists an integer n1 such that for every even n > n1,

R(Cn,Cn,Cn) = 2n.

Our proof generally follows the proof-line of Gyárfás et al. [7] in which we strengthen some

of their lemmas and introduce new ones in order to find monochromatic cycles instead of just

paths.

2. Notation

Our notation is standard. For graphs, the first subscripts indicate the number of vertices, e.g.,

Gn is always a graph of n vertices. Cn is the cycle with n vertices and Pn is the path with n

vertices. The length of a path is a number of its edges and, if x is its first vertex and x′ is its last

vertex, then we call it an (x, x′)-path. Given a set X of vertices of a graph G, G[X] denotes the

subgraph induced by the edges with both ends in X and G \ X denotes the subgraph obtained by

deleting the vertices of X and the edges incident to the deleted vertices.

Given two disjoint non-empty sets of vertices X and Y , E(X,Y) denotes the set of all the

edges with one end in X and the other one in Y . We also set e(X,Y) = |E(X,Y)| and

d(X,Y) =
e(X,Y)

|X||Y |
.

We denote the bipartite subgraph of G with bipartition X∪Y and the edge set E(X,Y) by G[X,Y]

and K(X,Y) stands for the complete bipartite graph with bipartition X ∪ Y .

Whenever we speak about colorings, we mean edge-colorings. Mostly we use three colors,

red, blue and green, and the subgraphs induced by the edges of a given color are indicated

by superscripts: GR is the red subgraph of G. However, the corresponding graph theoretical

parameters, such as the number of edges or degrees, will be indicated by subscripts: eR(X,Y)

denotes the number of red edges joining X to Y in an edge-colored graph. If an edge xy of G

is red, we say that y is a red neighbor of x (and vice-versa). For a vertex x, N(x) denotes the

set of all vertices adjacent to x and we set deg(x,Y) := |N(x) ∩ Y | (the degree of x to Y) and

degR(x,Y) := |NR(x) ∩ Y | (the red degree of x to Y).

A graph Gn is called γ-dense if it has at least γ
(

n

2

)

edges. A bipartite graph with partite sets

of size k and ℓ is γ-dense if it contains at least γkℓ edges.

A matching in a graph G is a set of pairwise vertex-disjoint edges. A connected matching is

a matching M such that all the edges of M are in the same component of G.
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3. Extremal colorings and Stability

Below we give a coloring that shows the lower bound (that is, R(Cn,Cn,Cn) > 2n − 1) in

Theorem 1.

Coloring 1 (ECM AX(n)). Let n ≥ 4 be even and let A ∪ B ∪ C ∪ D ∪ K be a partition of the

vertices of K2n−1 such that |A| = |B| = |C| = |D| = n/2 − 1 and |K| = 3 (recall that n is even). Let

K = {r, g, b}. Color the edges inside A, B,C,D arbitrarily, the edges in E(A, B)∪ E(C,D) by red,

the edges in E(A,D) ∪ E(B,C) by green, and the edges in E(A,C) ∪ E(B,D) by blue. Now color

the edges from r to A ∪ B ∪C ∪ D by red and the edges from g to A ∪ B ∪C ∪ D ∪ {r} by green.

Finally, color all the edges incident to b by blue.

A B

C D

r g b
red

green

blue

Figure 1: Coloring of K2n−1 with no Cn

Lemma 2. For all n ≥ 4 even, R(Cn,Cn,Cn) > 2n − 1.

Proof. We must show that any n ≥ 4 even, coloring ECMAX (n) does not contain any monochro-

matic Cn. Let GB, GR,GG be the color classes of ECMAX (n). It is clear that GR
1

:= GR \ {r, g, b},

GB
1

:= GB \ {r, g, b} GG
1

:= GG \ {r, g, b} do not contain any monochromatic Cn because each of

their components has order n − 2 < n. Since r is the only vertex that is adjacent (in GR) to the

both components of GR
1
, there is no red Cn in GR. Similarly, there are no monochromatic Cn in

GB or GG. HERE

To prove the upper bound in Theorem 1, i.e., R(Cn,Cn,Cn) ≤ 2n, we will need to look

at another three types of colorings. It will be also convenient to consider multi-3-colorings

instead of 3-colorings. In a multi-3-coloring of a graph G, some of its edges can be assigned

more than one color. We say that an edge is C-exclusive (or exclusive in color C) for C ∈

{(R)ed, (G)reen, (B)lue} if it is assigned color C only. We denote by GC∗ the subgraph induced

by the C-exclusive edges. Now we define the 3 types of colorings:

Coloring 2 (EC1(α, δ) type).

A (multi-3-)coloring of a graph G is of type EC1(α, δ), where 0 ≤ α, δ < 1, if there exists a

partition A ∪ B ∪C ∪ D of V(G) such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α)|V(G)|/4;

(b) The bipartite graphs GR∗ [A, B],GR∗[C,D],GG∗ [A,D],GG∗ [B,C],GB∗[A,C] and GB∗[B,D]

are (1 − δ)-dense.
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Coloring 3 (EC2(α, δ) type).

A (multi-3-)coloring of a graph G is of type EC2(α, δ), where 0 ≤ α, δ < 1, if there exists a

partition A ∪ B ∪C ∪ D of V(G) such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α)|V(G)|/4;

(b) The bipartite graphs GR∗ [A, B], GG∗ [A ∪ B,C] and GB∗ [A ∪ B,D] are (1 − δ)-dense.

Coloring 4 (EC3(µ, c1, c2, δ) type).

A (multi-3-)coloring of a graph G is of type EC3(µ, c1, c2, δ), where 0 ≤ µ, c1, c2, δ < 1, if there

exists a partition A ∪ B ∪C ∪ D of V(G) such that

(a) |A|, |B|, |C| ≥ (1 − c1µ)|V(G)|/4, |D| ≥ µ|V(G)|/4;

(b) |A| ≥ max{|B|, |C|, |D|} + µ|V(G)|/4, |A ∪ D| ≤ (1 + c2µ)|V(G)|/2;

(c) The bipartite graphs GR∗ [A, B], GR∗ [C,D], GG∗ [A,D], GG∗ [B,C], GB∗[A,C] and GB∗[B,D]

are (1 − δ)-dense.

EC3

A B

CD

EC2

A B

CD

EC1

A B

CD

red

green

blue

Figure 2: Three different types of colorings

We distinguish the case δ = 0 by giving the above colorings special names.

Definition 3. We say that a coloring is EC1(α)-complete if it is of the type EC1(α, 0), that is, if

the monochromatic bipartite graphs involved in the definition of EC1 are complete. We define

EC2(α)-complete and EC3(µ, c1, c2)-complete colorings in a similar way.

The main tool to prove the upper bound in Theorem 1 is the following variant of the stability

theorem proved in [7], [8].

Theorem 4. Given α1 > 0 and µ1 > 0, there exist positive reals η4, ǫ4 and µ4, µ4 < µ1, such that

for all ǫ < ǫ4 there exists a positive integer n4 such that the following holds:

If n ≥ n4 and a (1 − ǫ)-dense graph Gn is 3-multi-colored, then one of the following cases

occurs:

Case 1: Gn contains a monochromatic connected matching of size at least (1/4 + η4)n;

Case 2: the coloring is of type EC1(α1/2, α1/2);

Case 3: the coloring is of type EC2(α1/2, α1/2);

Case 4: the coloring is of type EC3(µ4, 0.7, 0.2, ε1/3).
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The proof of Theorem 4 is essentially the same as in [7] and it can be found in [1]. In order

to deal with Cases 2–4, we will need the following lemmas whose proofs appear in Sections 7

and 8.

Lemma 5. There exists α5 > 0 such that, for all α ≤ α5 and all δ ≤ α, there exists a positive

integer n5 with the following property: For every even n ≥ n5, every 3-coloring of K2n of type

EC1(α, δ) contains a monochromatic Cn.

Lemma 6. There exists α6 > 0 such that, for all α ≤ α6 and all δ ≤ α, there exists a positive

integer n6 with the following property: For every even n ≥ n6, every 3-coloring of K2n of type

EC2(α, δ) has a monochromatic Cn.

Lemma 7. There is an integer µ7 > 0 such that, for all µ ≤ µ7, c1 < 1 and c2 < 0.5, there exist

n7 = n7(µ, c1, c2) and δ7 = δ7(µ, c1, c2) such that the following holds: For every even n ≥ n7 and

0 < δ ≤ δ7, every 3-coloring of K2n of type EC3(µ, c1, c2, δ) contains a monochromatic Cn.

The remainder of this paper is organized as follows: we present Szemerédi’s regularity lemma

in the next section. The proof of Theorem 1 is given in Section 5, and Sections 7 and 8 contain

the proofs of the above three lemmas.

4. Regularity Lemma for graphs

Szemerédi’s regularity lemma [12] asserts that each graph of positive edge-density can be

approximated by the union of a bounded number of random-like bipartite graphs. Before it can

be stated formally, the concept of ε-regular pairs needs to be defined.

Definition 8. Let G = (V, E) be a graph and let 0 < ε ≤ 1. We say that a pair (A, B) of two

disjoint subsets of V is ε-regular (with respect to G) if

|d(A′, B′) − d(A, B)| < ε

holds for any two subsets A′ ⊂ A, B′ ⊂ B with |A′| > ε|A|, |B′| > ε|B|.

This definition states that a regular pair has uniformly distributed edges. In the next section,

we will make a use of the following properties of regular pairs.

Fact 9. Let G be a bipartite graph with bipartition V(G) = V1 ∪ V2 such that the pair (V1,V2)

is ε-regular with density d := d(V1,V2). Then all but at most ε|V1| vertices v ∈ V1 satisfy

deg(v) ≥ (d − ε)|V2|.

The next lemma about regular pairs is a slightly stronger version of Claim 3 in [11]. The

version in [11] is the case where β = 1. Both statements have the same proof that we omit here.

Lemma 10. For every 0 < β < 1 there exists an n10 such that for every n > n10 the following

holds: Let G be a bipartite graph with bipartition V(G) = V1 ∪ V2 such that |V1|, |V2| ≥ n.

Furthermore let the pair (V1,V2) be ε-regular with density at least β/4 for some ε satisfying

0 < ε < β/100. Then for every ℓ, 1 ≤ ℓ ≤ n − 5εn/β, and for every pair of vertices v′ ∈ V1,

v′′ ∈ V2 satisfying deg(v′), deg(v′′) ≥ βn/5, G contains a path of length 2ℓ + 1 connecting v′

and v′′.
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The regularity lemma of Szemerédi [12] enables us to partition the vertex set V(G) of a graph

G into t+1 sets V0∪V1∪. . .∪Vt in such a way that almost all the pairs (Vi,V j) satisfy Definition 8.

Its precise statement, extended to more than one graph, is as follows.

Theorem 11. For every ε > 0 and s,m ∈ N there exist integers N11 = N11(ε, s,m) and M11 =

M11(ε, s,m) such that: for all graphs G1, . . . ,Gs with the same vertex set V, |V | ≥ N11, there is a

partition of V into t + 1 sets

V = V0 ∪ V1 ∪ . . . ∪ Vt

such that

(a) m ≤ t ≤ M11,

(b) |V0| ≤ εn, |V1| = . . . = |Vt |, and

(c) all but at most ε
(

t

2

)

pairs (Vi,V j), 1 ≤ i < j ≤ t, are ε-regular with respect to each Gk,

1 ≤ k ≤ s.

Remark 12. The original regularity lemma refers to the case s = 1. The proof is (basically) the

same for an arbitrary but fixed number s of graphs. This version is used, for example, in [5], and

formulated in the survey [10].

5. Proof of Theorem 1

We give first a brief overview of the proof. We start the proof by defining a number of

parameters in order to be able to apply a sequence of lemmas later. At this point (see (3)), we

will also choose n1 (that is, the absolute constant from Theorem 1).

Next, we consider a 3-coloring (GR,GG,GB) of the complete graph K2n, where n is even

and n > n1. We apply the regularity lemma (Theorem 11) with carefully chosen ε (see (2)) to

GR,GG,GB and obtain a partition V0 ∪ V1 ∪ · · · ∪ Vt of V(K2n) satisfying conditions (a)-(c) in

Theorem 11. Using this partition we define the so-called reduced graph H and also an appropriate

multi-3-coloring of its edges: The vertex set of H is {1, . . . , t}, we have an edge between i and

j if and only if (Vi,V j) is an ǫ-regular pair with respect to GR,GG and GB, and an edge i j is is

colored by red (blue, green, respectively) if GR[Vi,V j] (GB[Vi,V j], GG[Vi,V j], respectively) has

the edge density at least ε1/3/4.

Then, we apply Theorem 4 to H, which will lead us to one of four cases: either H has a

monochromatic connected matching of a certain size or its multi-3-coloring is of type EC1 or

EC2 or EC3. In the first case, we use the monochromatic matching in H to find a copy of Cn of

the same color in K2n by applying Lemma 10. In other three cases, we prove that the original

coloring of K2n must be of the same type as the coloring of H. Then we apply Lemma 5, Lemma 6

or Lemma 7 to find a monochromatic Cn in K2n.

Proof. We have already proved the lower bound in Lemma 2. Let us prove the upper bound. Set

α1 := min{α5, α6, 1/20} so that, in particular, we can use α1 as an input for Lemmas 5 and 6 and

obtain n5 = n5(α1, α1) and n6 = n6(α1, α1). Passing α1 and µ1 := µ7 (the absolute constant from

Lemma 7) as parameters to Theorem 4, we obtain ǫ4, η4 and µ4 < µ7. Let

η := η4.

Now, inputting µ := 0.99µ4, c1 := 0.8, c2 := 0.3 into Lemma 7, we obtain n7 and δ7. We define

ε :=
1

2
min















ε4,
δ3

7

8
,

1

106
,
α3

1

1000
,
µ4

100















. (2)
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This choice particularly means that ε < ε4, 2ε1/3 < δ7 and ε < 0.001ε1/3, all of which we

will use later. For this ε, Lemma 4 yields n4 and Lemma 10 applied with β = ε1/3 gives n10.

Now we may chose m = max{n4, 1/ε} and, from Theorem 11, we obtain N11 = N11(ε, 3,m) and

M11 = M11(ε, 3,m). Finally, define

n1 = max











n5, n6, n7,N11, 4M11n10,
M2

11

ε











. (3)

Consider any 3-coloring (GR,GG,GB) of K2n with n even and n > n1. We apply the regularity

lemma with parameters ǫ, m and s := 3 to GR,GG,GB. Let V := V(K2n) = V0 ∪ V1 ∪ . . . ∪ Vt be

the partition guaranteed by this lemma, thus satisfying

(a) m ≤ t ≤ M11,

(b) |V0| ≤ ε(2n), |V1| = . . . = |Vt |, and

(c) all but at most ε
(

t

2

)

pairs (Vi,V j), 1 ≤ i < j ≤ t, are ε-regular with respect to each GR, GG,

GB.

Now we define the reduced graph H in the following way: the vertex set of H is {1, . . . , t} and

we have an edge between i and j if and only if (Vi,V j) is an ǫ-regular pair with respect to GR,GG

and GB. Notice that by (c),

e(H) ≥ (1 − ǫ)

(

t

2

)

,

that is, H is (1 − ε)-dense.

We define a 3-multi-coloring (HR,HG,HB) of H in the following way: for c ∈ {R, B,G}, we

put the edge i j into Hc if ec(Vi,V j) ≥ ε
1/3|Vi||V j|/3. Since t ≥ m ≥ n4, we can apply Theorem 4

to H and distinguish four cases.

Case 1: There is a monochromatic connected matching M of size t1 ≥ (1/4 + η)t in H. Without

loss of generality assume that M is red and let aibi, 0 ≤ i < t1, be all the edges of M.

Now, we will use standard regularity arguments to built a (red) cycle of length n in GR. First,

let F be any minimal connected red subgraph of H containing M. Clearly, F is a tree. Consider

a closed minimal walk W = i1i2 . . . iℓi1 that contains all the edges of F. Since F is a tree, W must

be of even length and ℓ ≤ 2t.

Using Fact 9 repeatedly, we find an even red cycle C̃ = vi1 vi2 . . . viℓ such that vi j
∈ Vi j

and vi j

has at least ε1/3|Vi j−1
|/4 red neighbors in Vi j−1

and at least ε1/3|Vi j+1
|/4 red neighbors in Vi j+1

for

all j = 1, . . . , ℓ. We emphasize that while we may have Vik = Viℓ , for some k , ℓ, the vertices vi j

of C are chosen to be pairwise distinct. (We set Vi0 := Viℓ and Viℓ+1
:= Vi1 .)

Then, for each edge akbk of M, we choose a natural number ℓk satisfying

1 ≤ ℓk ≤

(

1 −
5ε

ε1/3

)

min
{

|Vak
| − 2t, |Vbk

| − 2t
}

in such a way that
t1−1
∑

k=0

2ℓk = n − ℓ.
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This is possible because n − ℓ is even, n > n − ℓ ≥ n − 2t ≥ 2t ≥ 2t1, and
t1−1
∑

k=0

2ℓk can attain any

even value between 2t1 and

t1−1
∑

i=0

2

(

1 −
5ε

ε1/3

)

min{|Vak
| − 2t, |Vbk

| − 2t} ≥ 2t1

(

1 −
5ε

ε1/3

) (

(1 − ε)2n

t
− 2t

)

≥

(

1

2
+ 2η

)

t(1 − 5ε2/3)
(1 − 2ε)2n

t

≥ (1 + 3η)n.

Finally, we set V ′ak
= (Vak

\ C̃) ∪ {vak
}, V ′

bk
= (Vbk

\ C̃) ∪ {vbk
} and notice that

|V ′ak
| ≥ |Vak

| − |C̃| ≥ |Vak
| − 2t ≥

(1 − ε)2n

t
− 2t ≥

(1 − 2ε)2n

t
≥
|Vak
|

2
≥

(1 − ε)2n

2M11

> n10

and, similarly,

|V ′bk
| ≥
|Vbk
|

2
> n10.

Hence, GR[V ′ak
,V ′

bk
] is (2ε)-regular with density at least ε1/3/4 − ε > ε1/3/5 and we can apply

Lemma 10 to GR[V ′ak
,V ′

bk
]. Since

1 ≤ ℓk ≤

(

1 −
5ε

ε1/3

)

min
{

|Vak
| − 2t, |Vbk

| − 2t
}

≤

(

1 −
5ε

ε1/3

)

min
{

|V ′ak
|, |V ′bk

|
}

,

there exists a path Pak ,bk
of length 2ℓk + 1 that starts at vak

, ends at vbk
, and consists only of edges

in GR[V ′ak
,V ′

bk
]. In C̃, we replace each edge vak

vbk
by the path Pak ,bk

. This yields a red cycle of

length ℓ − t1 +
t1−1
∑

k=0

(2ℓk + 1) = n.

Case 2: (HR,HG,HB) is a coloring of type EC1(α1/2, α1/2). We will show that this implies that

(GR,GG,GB) is of type EC1(α1, α1). Let A∪B∪C∪D be a partition of V(H) satisfying conditions

(a) and (b) of EC1(α1/2, α1/2), and consider partition ( f (A) ∪ V0) ∪ f (B) ∪ f (C) ∪ f (D) of V ,

where f (X) :=
⋃

i∈X Vi.

First note that

| f (A) ∪ V0| ≥ |A|
(1 − ǫ)(2n)

t
≥

(

1 −
α1

2

)

t

4

(1 − ǫ)(2n)

t
≥ (1 − α1)

2n

4
.

Similarly, we obtain that | f (B)|, | f (C)|, | f (D)| ≥ (1 − α1)2n/4 as well. Hence, condition (a) of

EC1(α1, α1) holds.

Next we show that condition (b) in EC1(α1, α1) is also true for this partition ( f (A) ∪ V0) ∪

f (B) ∪ f (C) ∪ f (D) of V and the original 3-coloring (GR,GG,GB) of K2n. Note that since there

are no multicolored edges in K2n, we have GR∗ = GR, GB∗ = GB and GG∗ = GG. We first estimate

the number of edges between f (A) ∪ V0 and f (B) that are not in GR∗ = GR.

For every i ∈ A, j ∈ B such that i j < HR∗ , the number of edges in K(Vi,V j) ∩ (GG ∪ GB)

is bounded by |Vi||V j|. On the other hand, for each edge i j ∈ HR∗ we have that i j < HG ∪ HB,

thus, by the definition of HG and HB, the number of edges in K(Vi,V j) ∩ (GG ∪GB) is bounded

8



by 2
(

ε1/3|Vi||V j|/4
)

. We have no information about the edges from V0 to f (B), so we can only

estimate the number of these edges by |V0|| f (B)|. Hence,

|K( f (A) ∪ V0, f (B)) ∩ (GG ∪GB)| ≤
∑

i∈A, j∈B

i j<HR∗

|Vi||V j| +
∑

i∈A, j∈B

i j∈HR∗

2
ε1/3

4
|Vi||V j|

+|V0|| f (B)|.

We estimate all three terms on the right-hand side. There are at most α1|A||B|/2 pairs i ∈ A,

j ∈ B such that i j < HR∗ . We also know that |V1| = · · · = |Vt | = (2n − |V0|)/t. Hence,

∑

i∈A, j∈B

i j<HR∗

|Vi||V j| ≤
α1

2
|A||B|

(

2n − |V0|

t

)2

=
α1

2

∑

i∈A, j∈B

|Vi||V j| =
α1

2
| f (A)|| f (B)|.

Since ε1/3 < α1/100, |V0| ≤ ε(2n) and | f (A) ∪ V0| ≥ (1 − α1)2n/4, we have

∑

i∈A, j∈B

i j∈HR∗

2
ε1/3

4
|Vi||V j| ≤

ε1/3

2

∑

i∈A, j∈B

|Vi||V j| ≤
α1

4
| f (A)|| f (B)|

and

|V0|| f (B)| ≤ ε(2n)| f (B)| ≤ 5ε(1 − α1)
2n

4
| f (B)| ≤

α1

4
| f (A ∪ V0)|| f (B)|.

Consequently,

|K( f (A) ∪ V0, f (B)) ∩ (GG ∪GB)| ≤ α1| f (A) ∪ V0|| f (B)|

and K( f (A) ∪ V0, f (B)) ∩GR∗ is (1 − α1)-dense.

In the same way, one proves that the bipartite graphs GR∗ [ f (C), f (D)], GG∗ [ f (A)∪V0, f (D)],

GG∗ [ f (B), f (C)], GB∗[ f (A) ∪ V0, f (C)] and GB∗ [ f (B), f (D)] are all (1 − α1)-dense. We omit the

technical details here.

So, the given 3-coloring of K2n is of type EC1(α1, α1), n > n5 and α1 < α5. We use Lemma 5

to conclude that there is a monochromatic Cn in K2n.

Case 3: (HR,HG,HB) is of type EC2(α1/2, α1/2). Similarly to the previous case, one can show

that (GR,GG,GB) is of type EC2(α1, α1). Since n > n6 and α1 < α6, we use Lemma 6 and find

the monochromatic Cn in K2n. We omit technical details.

Case 4: (HR,HG,HB) is of type EC3(µ4, 0.7, 0.2, ε1/3). We claim that in this case, (GR,GG,GB)

is of type EC3(0.99µ4, 0.8, 0.3, 2ε
1/3). Indeed, let A∪ B∪C ∪ D be a partition of V(H) such that

conditions (a)-(c) of EC3(µ4, 0.7, 0.2, ε1/3) hold and consider partition ( f (A) ∪ V0) ∪ f (B) ∪

f (C) ∪ f (D) of V , where f (X) :=
⋃

i∈X Vi. Clearly,

| f (D)| ≥ |D|
(1 − ǫ)(2n)

t
≥ µ4

t

4

(1 − ǫ)(2n)

t
≥ (1 − ǫ)µ4

2n

4
≥ 0.99µ4

2n

4
.

Furthermore,

| f (A) ∪ V0|, | f (B)|, | f (C)| ≥ (1 − 0.7µ4)
t

4

(1 − ǫ)(2n)

t
≥ (1 − 0.8(0.99µ4))

2n

4
,
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hence, condition (a) of EC3(0.99µ4, 0.8, 0.3, 2ε
1/3) is true. Also notice that if |A| − |B| ≥ µ4t/4,

then

| f (A)| − | f (B)| ≥ µ4

t

4

(1 − ε)(2n)

t
= (1 − ε)µ4

2n

4
≥ 0.99µ4

2n

4
,

and the same holds if we replace B with C or D. It follows that

| f (A) ∪ V0| ≥ | f (A)| ≥ max{| f (B)|, | f (C)|, | f (D)|} + 0.99µ4

2n

4
.

Finally, since ε ≤ µ4/100, we get

| f (A) ∪ V0 ∪ D| ≤ (1 + 0.2µ4)
t

2

2n

t
+ ε(2n) ≤ (1 + 0.3(0.99µ4))

2n

2
.

Thus, condition (b) of EC3(0.99µ4, 0.8, 0.3, 2ε
1/3) holds as well. Condition (c) can be verified in

a similar way as in Case 2.

To finish this case, we use Lemma 7 with µ = 0.99µ4 and δ = 2ε1/3 to find the monochromatic

Cn in K2n. The assumptions of this lemma are satisfied because 0.99µ4 < µ4 < µ7, 2ε1/3 <

δ7(0.99µ4, 0.8, 0.3) and n ≥ n7.

6. Paths and cycles in (bipartite) graphs

In our proof of Lemmas 5 and 7, we will need the following well-known facts.

Theorem 13 ([3]). Suppose that Hn is a graph with minimum degree bigger than n/2. Then Hn

contains the cycle Ck for each k = 3, . . . , n.

Lemma 14 ([2], page 107). Let Hn be a graph containing no Pk+1, k ≥ 1. Then e(Hn) ≤

(k − 1)n/2. Furthermore, if e(Hn) = (k − 1)n/2, then Hn is the disjoint union of cliques Kk.

The next 3 lemmas are from [1] and their proofs are based on greedy (embedding) algorithm.

Lemma 15 (Lemma 5.7 in [1]). Let 0 ≤ β < 1/4 and let H be a bipartite graph with bipartition

X ∪ Y, |X|, |Y | ≥ 4, such that for every x ∈ X, deg(x,Y) ≥ (1 − β)|Y | and for every y ∈ Y,

deg(y, X) ≥ (1 − β)|X|. Then

(a) for any two vertices x, x′ ∈ X there exists an (x, x′)-path of length 2k − 2 for every 2 ≤

k ≤ min{|X|, (1 − 2β)|Y |}; the analogous statement, obtained by exchanging the two vertex

classes, also holds;

(b) for any two vertices x ∈ X, y ∈ Y there exists an (x, y)-path of length 2k − 1 for every odd

2 ≤ k ≤ (1 − 2β) min{|X|, |Y |}.

Proof. In order to prove (a), we first pick k distinct vertices x1, . . . , xk ∈ X (recall that k ≤ |X|)

such that x1 = x and xk = x′. Then we build inductively a path Pk = x1y1x2y2 . . . yk−1xk, with

yi ∈ Y for all i, 1 ≤ i ≤ k − 1. Assuming that for a given ℓ, 1 ≤ ℓ ≤ k − 1, we have built

Pℓ = x1y1 . . . yℓ−1xℓ, let yℓ be any vertex in the common neighborhood of xℓ−1 and xℓ which is

not in V(Pℓ). Then set Pℓ+1 := Pℓyℓxℓ+1. Such a vertex must exist because

∣

∣

∣(N(xℓ−1) ∩ N(xℓ)) \ V(Pℓ)
∣

∣

∣ ≥
(

|B| − 2β|B|
)

− (ℓ − 1) ≥ 2,
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where the last inequality follows from the fact that

ℓ ≤ k − 1 ≤ (1 − 2β)|B| − 1.

The proof of (b) is similar: first take any neighbor x′ of y such that x′ , x, and then apply

the previous construction to find a path of length 2k − 2 from x to x′, while making sure that this

path also avoids y.

Lemma 16 (Lemma 5.8 in [1]). Let 0 ≤ β < 1/3 and let H be a bipartite graph with bipartition

X̃ ∪ Ỹ where, |X̃| = |Ỹ |. Suppose that X′ ∪ X is a partition of X̃ and Y ′ ∪Y is a partition of Ỹ such

that

(a) |X′| ≤ β|X̃|, |Y ′| ≤ β|Ỹ |;

(b) H[X,Y] is the complete bipartite graph;

(c) there is an ordering x1, . . . , xk of X′ such that deg(xi,Y) ≥ 2i for all 1 ≤ i ≤ k;

(d) there is an ordering y1, . . . , yℓ of Y ′ such that deg(yi, X) ≥ 2i for all 1 ≤ i ≤ ℓ.

Then H is Hamiltonian.

Proof. Suppose that all the conditions in the lemma hold and let x1, . . . , xk, y1, . . . , yℓ be the

vertices given by (c) and (d).

We may assume k = ℓ, i.e. |X′| = |Y ′| ≤ β|X̃| = β|Ỹ |, by means of sending vertices from X

to X′ or from Y to Y ′ if necessary. (For that we use that β < 1/3). By condition (c), for each

xi, 1 ≤ i ≤ k, we can choose two of its neighbors, say ai,1, ai,2 ∈ Y , such that a1,1, . . . , ak,1,

a1,2, . . . , ak,2 are pairwise distinct. Similarly, by (d), for 1 ≤ i ≤ k, we can pick neighbors

bi,1, bi,2 ∈ X of yi, such that b1,1, . . . , bk,1, b1,2, . . . , bk,2 are pairwise distinct.

Y ′

X

Y

X′

. . .

. . .

y1 y2 yk

. . .

. . .

x1 x2 xk

. . .

. . .

Figure 3: Construction of the path P

Since the graph H[X,Y] is complete, it contains the edges a1,1b1,1 and ai,2bi+1,1, bi,2ai+1,1

for every i, 1 ≤ i ≤ k − 1. Hence we get an (ak,2, bk,2)-path P of order 6k, with vertex set

V(P) = {xi, yi, ai, j, bi, j | 1 ≤ i ≤ k, 1 ≤ j ≤ 2}. Since H \ V(P) is a complete bipartite graph with

equally sized parts, it is trivial to extend P to a hamiltonian cycle.

Lemma 17 (Lemma 5.9 in [1]). Let 0 ≤ β < 1/4, n, t ∈ N, let H be a graph, and let X̃, Ỹ be

two disjoint subsets of V(H) satisfying |X̃| = n/2 + t and |Ỹ | = n/2 − t. Suppose that X′ ∪ X is a

partition of X̃ and Y ′ ∪ Y is a partition of Ỹ such that

11



(a) |X′| ≤ β(n/2 − t), |Y ′| ≤ β(n/2 − t);

(b) H[X,Y] is the complete bipartite graph;

(c) there is an ordering x1, . . . , xk of X′ such that deg(xi,Y) ≥ 2i for all 1 ≤ i ≤ k;

(d) H[X] contains a path P := P2t+1,

(e) there is an ordering y1, . . . , yℓ of Y ′ such that deg(yi, X \ V(P)) ≥ 2i for all 1 ≤ i ≤ ℓ.

Then H[X̃ ∪ Ỹ] contains Cn.

Proof. Let H be a graph and P be a path satisfying all the conditions of the lemma and denote by

u, v ∈ X the endpoints of P. Consider the graph H′ obtained from the graph H[(X̃ \V(P))∪{u}, Ỹ]

by removing all the edges from u to Y ′. Notice that |(X̃ \P)∪{u}| = |Ỹ | = n/2− t. By the previous

lemma, there exists a hamiltonian cycle C in H′. Since u has no neighbors in Y ′ in the graph H′,

the neighbors of u in C are in Y . Take one of those neighbors, say u′, and replace the edge uu′ of

C by the path uPvu′. The result is a hamiltonian cycle in the original graph H.

Remark 18. If, in the last two lemmas, we assume that deg(x,Y) ≥ 2β|X̃| ≥ 2|X′| for every x ∈

X′, then any ordering of the vertices of X′ satisfies condition (c). Similarly, if deg(y, X) ≥ 2|Y ′|

for every y ∈ Y ′, then any ordering of the vertices of Y ′ satisfies condition (d).

7. Proof of Lemmas 5 and 7

Since colorings EC1(α, δ) and EC3(µ, c1, c2, δ) are quite similar, it turns out we can prove

both lemmas simultaneously. The proof is rather long due to the fact that we need to distinguish

several sub-cases.

Proof. We set

α5 = µ7 := 10−12

and, in Lemma 7, for µ ≤ µ7, define

δ7 = min















(

µ

25

)2

,
(1 − c1)3µ3

106
,

(

(0.5 − c2)µ

100

)2














.

For δ ≤ α ≤ α5, we put

n5 = ⌈δ
−12⌉

and, for δ ≤ δ7, we put

n7 = ⌈δ
−12⌉.

Consider any 3-coloring of G = K2n of either type EC1(α, δ), in which case we assume n ≥ n5,

or EC3(µ, c1, c2, δ), in which case we assume n ≥ n7 . We aim to find a monochromatic Cn in this

coloring. Let A ∪ B ∪ C ∪ D be a partition of V := V(G) satisfying either conditions (a), (b) of

EC1(α, δ) or (a)-(c) of EC3(µ, c1, c2, δ).

Now we find large subsets A2 ⊂ A, B2 ⊂ B, C2 ⊂ C, D2 ⊂ D such that the induced coloring of

the graph G2 := G[A2 ∪ B2 ∪C2 ∪D2] is either EC1 (α)-complete or EC3 (µ, c1, c2)-complete. To

this goal, we first remove from A all the vertices with low degrees to B, C or D (in an appropriate

color). More precisely, a vertex v ∈ A has low degree if either

degR(v, B) < (1 − δ1/2)|B| or degB(v,C) < (1 − δ1/2)|C| or degG(v,D) < (1 − δ1/2)|D|.

12



From the condition (b) in EC1 (α, δ) or (c) in EC3 (µ, c1, c2, δ) it follows that the number of these

low degree vertices in A is at most 6δ1/2|A|. Analogously, we define (and estimate the number of)

the low degree vertices for the sets B, C and D. Let E1 be the set of all the low degree vertices.

Then

|E1| ≤ 6δ1/2(|A| + |B| + |C| + |D|) ≤ 24δ1/2n.

Let A1 = A \ E1, B1 = B \ E1, C1 = C \ E1 and D1 = D \ E1. We observe that every vertex v ∈ A1

is adjacent to at least

(1 − δ1/2)|B| − 6δ1/2|B| ≥ (1 − 7δ1/2)|B1| ≥ (1 − δ1/3)|B1|

vertices in B1 by red edges. Similarly, we have

degB(v,C1) ≥ (1 − δ1/3)|C1| and degG(v,D1) ≥ (1 − δ1/3)|D1|.

We get similar inequalities for the sets B1, C1 and D1 and for appropriate colors.

Then Lemma 15 implies that for any a ∈ A1 and b ∈ B1, the bipartite graph GR[A1, B1]

contains a red (a, b)-path of any odd length between 3 and 2(1−2δ1/3) min{|A1|, |B1|}−1, and that

for any two vertices a1, a2 ∈ A it also contains a red (a1, a2)-path of any even length between 2

and 2(1−2δ1/3) min{|A1|, |B1|}−2. The same holds for the other pairs of sets and the corresponding

colors.

In particular, this means that there are no red vertex-disjoint edges between A1 and C1: if

a1c1 and a2c2 were two such edges, then for any even number k satisfying

4 ≤ k ≤ 2(1 − 2δ1/3)
(

min{|A1|, |B1|} +min{|C1|, |D1|}
)

− 4, (4)

we can find an (a1, a2)-path P in GR[A1, B1] and a (c1, c2)-path Q in GR[C1,D1] such that e(P) +

e(Q) = k. Clearly, P ∪ Q ∪ {a1c1, a2c2} is a copy of Ck+2. At this point we must distinguish

whether the original coloring of G was of type EC1 (α, δ) or EC3 (µ, c1, c2, δ).

The first case is easy: since in any EC1 (α, δ)-type coloring of G the sizes of the sets A, B, C,

D are at least (1 − α)2n/4, we have that

|A1|, |B1|, |C1|, |D1| ≥
(1 − α)n

2
− 24δ1/2n.

Consequently, k can be any even number between 4 and 2(1 − 2δ1/3)(1 − α − 48δ1/2)n − 4. Since

δ ≤ α ≤ 10−12, it is easy to see that

2(1 − 2δ1/3)(1 − α − 48δ1/2)n ≥ 2(1 − 2α1/3)(1 − 49α1/2)n ≥ (1 − 51α1/3)(2n) ≥ n + 2. (5)

In the second case, the condition (a) of EC3 (µ, c1, c2, δ) implies that

|A1|, |B1|, |C1| ≥
(1 − c1µ)n

2
− 24δ1/2n

and

|D1| ≥ µ
2n

4
− 24δ1/2n.

Since δ ≤ δ7 ≤ (1 − c1)3µ3/106, k can be as large as

2(1 − 2δ1/3)

(

(1 − c1µ)n

2
+
µn

2
− 48δ1/2n

)

> (1 + (1 − c1)µ − 100δ1/3)n ≥ n + 2. (6)
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In either case, we can take k = n − 2 above and find a red copy of Ck+2 = Cn in G. This

means that there are no red edges in E(A1,C1) with the exception of at most one red star. By the

same argument in which we use the green bipartite graphs GG[A1,D1] and GG[C1, B1] instead of

GR[A1, B1] and GR[C1,D1], there are no green edges in E(A1,C1) with the exception of at most

one green star.

Similar arguments show that there is at most one red and one green star in E(B1,D1), one red

and one blue star in E(A1,D1) and in E(B1,C1), and one green and one blue star in E(A1, B1) and

in E(C1,D1). We remove the centers of these (at most 12) stars from A1, B1,C1,D1 and obtain

sets A2, B2,C2,D2. Let E2 = V(G) \ (A2 ∪ B2 ∪C2 ∪ D2).

Clearly, the induced coloring of the graph G2 = G[A2 ∪ B2 ∪ C2 ∪ D2] is either EC1 (α)-

complete or EC3 (µ, c1, c2)-complete. Although these are very nice colorings of G2, they may

not have any monochromatic Cn. Therefore we still need to use the vertices in E2 to build our

monochromatic Cn in G.

Definition 19. For a vertex v ∈ E2, we say that

v is R1-type if either degR(v, A2), degR(v,C2) ≥ 4 or degR(v, B2), degR(v,D2) ≥ 4;

v is R2-type if either degR(v, A2), degR(v,D2) ≥ 4 or degR(v, B2), degR(v,C2) ≥ 4;

v is B1-type if either degB(v, A2), degB(v, B2) ≥ 4 or degB(v,C2), degB(v,D2) ≥ 4;

v is B2-type if either degB(v, A2), degB(v,D2) ≥ 4 or degB(v, B2), degB(v,C2) ≥ 4;

v is G1-type if either degG(v, A2), degG(v, B2) ≥ 4 or degG(v,C2), degG(v,D2) ≥ 4;

v is G2-type if either degG(v, A2), degG(v,C2) ≥ 4 or degG(v, B2), degG(v,D2) ≥ 4.

The next claim shows that E2 contains only a few vertices of the types defined above.

Claim 20. Either there exists a monochromatic Cn in G or there is at most one vertex of each of

the above types.

Proof. Suppose that G contains two vertices v1 and v2 of type R1. We will show that G has a red

copy of Cn. Assume, without loss of generality, that degR(v1, A2) ≥ 4 and degR(v1,C2) ≥ 4 and

let a1 ∈ A2, c1 ∈ C2 be any red neighbors of v1.

Now if degR(v2, A2) ≥ 4 and degR(v2,C2) ≥ 4, then there are red neighbors a2 ∈ A2, c2 ∈ C2

of v2 that are distinct from a1, c1. It follows from Lemma 15 that for any even number k satisfying

4 ≤ k ≤ 2(1 − 2δ1/3) (min{|A2|, |B2|} +min{|C2|, |D2|}) − 4, (7)

there exist an even red (a1, a2)-path P in GR[A2, B2] and an even red (c1, c2)-path Q in GR[C2,D2]

such that e(P) + e(Q) = k. Clearly, P ∪ Q ∪ {v1a1, a2v2, v2c2, c1v1} form a red copy of Ck+4. The

same type of analysis that we have done in (5) and (6) shows that we can take k = n − 4 and find

a red copy of Cn in G.

If degR(v2, B2) ≥ 4 and degR(v2,D2) ≥ 4, then we proceed similarly: we take any red neigh-

bors b2 ∈ B2 and d2 ∈ D2 of v2 and find red paths P from a1 to b2 with edges in GR[A2, B2] and

Q from c1 to d2 with edges in GR[C2,D2] such that P ∪ Q ∪ {v1a1, b2v2, v2d2, c1v1} is a red cycle

of length n.

By symmetry, if G has two vertices of type R2, B1, B2, G1 or G2, then we can also find a

monochromatic Cn. We omit the details here.
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Remark 21. In order to prove Claim 20, it suffices to say that a vertex v is of type R1 if either

degR(v, A2), degR(v,C2) ≥ 2 or degR(v, B2), degR(v,D2) ≥ 2. Only later we will need the stronger

definition of R1-type vertices.

We say that a vertex v ∈ E2 is of type R∗ (or R∗-type) if it is either R1-type or R2-type. We

define B∗-type and G∗-type vertices similarly. Notice, for example, that any vertex v ∈ E2 that

satisfies degR(v, A2 ∪ B2) ≥ 7 and degR(v,C2 ∪ D2) ≥ 7 must be of type R∗.

Denote by F be the set of vertices of type R∗, G∗ or B∗. By Claim 20, we have that |F| ≤ 6.

Let E′
2
= E2 \F. We define a partition A′

2
∪B′

2
∪C′

2
∪D′

2
of E′

2
as follows: We put a vertex v ∈ E′

2

to A′
2

if degR(v, B2) ≥ |B2| − 12, degB(v,C2) ≥ |C2| − 12, and degG(v,D2) ≥ |D2| − 12;

to B′
2

if degR(v, A2) ≥ |A2| − 12, degG(v,C2) ≥ |C2| − 12, and degB(v,D2) ≥ |D2| − 12;

to C′
2

if degB(v, A2) ≥ |A2| − 12, degG(v, B2) ≥ |B2| − 12, and degR(v,D2) ≥ |D2| − 12;

to D′
2

if degG(v, A2) ≥ |A2| − 12, degB(v, B2) ≥ |B2| − 12, and degR(v,C2) ≥ |C2| − 12.

We decide ties arbitrarily so that A′
2
, B′

2
,C′

2
,D′

2
are pairwise disjoint.

Is this really a partition of E′
2
? Indeed, for each vertex v ∈ E′

2
, since v is not of R∗-type, we

must have either degR(v, A2 ∪ B2) ≤ 6 or degR(v,C2 ∪ D2) ≤ 6 not to contradict our observation

above. Furthermore, we must also have that either degB(v, A2 ∪C2) ≤ 6 or degB(v, B2 ∪D2) ≤ 6,

and either degG(v, A2 ∪ D2) ≤ 6 or degG(v, B2 ∪C2) ≤ 6. Without loss of generality assume that

degR(v,C2 ∪ D2) ≤ 6 and degB(v, B2 ∪ D2) ≤ 6. Then degG(v,D2) ≥ |D2| − 12, which implies

degG(v, B2 ∪ C2) ≤ 6. From this we conclude that degB(v,C2) ≥ |C2| − 12 and degR(v, B2) ≥

|B2| − 12. Hence, v belongs to A′
2
. The other 3 possibilities yield that v is in one of B′

2
,C′

2
or D′

2
.

We put Ã2 := A2 ∪ A′
2
, B̃2 := B2 ∪ B′

2
, C̃2 := C2 ∪ C′

2
and D̃2 := D2 ∪ D′

2
, therefore,

Ã2 ∪ B̃2 ∪ C̃2 ∪ D̃2 = A2 ∪ B2 ∪C2 ∪ D2 ∪ E′
2
= V(G) \ F and

|Ã2 ∪ B̃2 ∪ C̃2 ∪ D̃2| = 2n − |F| ≥ 2n − 6.

Recall that |E′
2
| ≤ |E2| ≤ |E1| + 12 ≤ 25δ1/2n. If the original coloring of G was of type

EC3 (µ, c1, c2, δ), then Ã2 must be the largest among Ã2, B̃2, C̃2, D̃2 because condition (b) of

EC3 (µ, c1, c2, δ) holds for the original partition of G and 25δ1/2 ≤ 25δ
1/2

7
≤ µ. If it was EC1 (α, δ),

then we may assume the same by symmetry.

Notice that in either case, |Ã2| ≥ n/2− 1. If two of the sets Ã2, B̃2, C̃2 and D̃2, say Ã2 and B̃2,

have at least n/2 vertices, then there is a monochromatic red Cn in GR[Ã2, B̃2] by Lemma 16 and

Remark 18 (applied with β = 50δ1/2).

Thus, we may assume that |B̃2| = n/2−b, |C̃2| = n/2−c and |D̃2| = n/2−d, where b, c, d > 0.

We put |Ã2| = n/2 + a, where a ≥ −1, and |F| = f ≥ 0. Then

a + f = b + c + d. (8)

We distinguish two cases: a ≥ 0 and a = −1.

Case 1: a ≥ 0. We first prove that G[A2] contains a long monochromatic path.

Claim 22. The graph G[A2] contains either a red path P2b+1, or a blue path P2c+1, or a green

path P2d+1.
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Proof. Suppose that none of those paths exists. By Lemma 14, G[A2] has at most (2b − 1)|A2|/2

red edges, (2c − 1)|A2|/2 blue edges and (2d − 1)|A2|/2 green edges. Therefore,

(

|A2| − 1

2

)

|A2| ≤

(

2b − 1

2
+

2c − 1

2
+

2d − 1

2

)

|A2|.

From |Ã2| = |A2| + |A
′
2
| and |A′

2
| ≤ |E′

2
| ≤ 25δ1/2n, it follows that

n

2
+ a − 25δ1/2n − 1 ≤ |Ã2| − |E

′
2| − 1 = |A2| − 1 ≤ 2 (b + c + d) − 3

(8)
= 2(a + f ) − 3.

Hence, we have that a ≥ n/2− 25δ1/2n− 2 f + 2. From this we derive a lower bound on the order

of the set A from the original partition of V(G), namely

|A| ≥ |A2| ≥ |Ã2| − 25δ1/2n ≥ n − 50δ1/2n − 2 f + 2.

But this is a contradiction: in EC1 (α, δ), from condition (a) and from δ ≤ α ≤ 10−12, we have

|A| = (2n) − |B| + |C| + |D| ≤ 2n − 3(1 − α)
2n

4
= (1 + 3α)

n

2
<

3n

4
< n − 50δ1/2n − 2 f + 2;

in EC3 (µ, c1, c2, δ), the bounds for |A ∪ D| and |D| given in (a) and (b) imply that

|A| = |A ∪ D| − |D| ≤ (1 + (c2 − 0.5)µ)n < n − 50δ1/2n − 2 f + 2,

because c2 < 0.5 and δ ≤ δ7 ≤ ((0.5 − c2)µ/100)2.

Assume there exists a green path P2d+1 in G[A2].

If d ≤ a, then we find a green Cn using Lemma 17 applied with H = GG, X̃ = Ã2, X = A2,

X′ = A′
2
, Ỹ = D̃2, Y = D2, Y ′ = D′

2
, β = 1/100 and t = d. To verify its assumptions, it suffices to

recall that |A′
2
|, |D′

2
| ≤ 25δ1/2n and, moreover, to notice that if the original coloring was EC1 (α, δ),

then we have that d ≤ (α+ 50δ1/2)n/2, otherwise, the coloring was EC3 (µ, c1, c2, δ) and we have

d ≤ (1 − µ)n/2.

If d > a, then for every vertex v in F we find a color q ∈ {R, B,G} for which

degq(v, A2 \ P) ≥
|A2 \ P|

3
. (9)

Suppose there are d−a vertices for which this color is green. We add theses vertices to D′
2
⊂ D̃2,

so that, after adding these vertices, |D̃2| = n/2 − d + (d − a) = n/2 − a, and we use Lemma 17

again to find a green Cn.

Otherwise, there exist at most d − a − 1 vertices in F such that degG(v, A2 \ P) ≥ |A2 \ P|/3.

If there are b vertices for which the color q in (9) is red, then we add theses vertices to B′
2
⊂ B̃2

so that, after adding these vertices, |B̃2| ≥ n/2. Applying Lemma 16 yields a red cycle Cn in

GR[Ã2, B̃2].

Otherwise, there are at most b − 1 vertices in F such that the color q in (9) is red. By the

same argument, there either exists a blue Cn in GB[Ã2, C̃2] or at most c − 1 vertices in F satisfies

(9) with q = B. But the latter is impossible because then

|F| ≤ (d − a − 1) + (b − 1) + (c − 1) = |F| − 3.
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Other cases, when there is a blue path P2c+1 or a red path P2b+1 in G[A2], are handled simi-

larly.

Case 2: a = −1. In this case, we have that n/2 − 1 = |Ã2| ≥ |B̃2|, |C̃2|, |D̃2|, |F| ≤ 6, and

|Ã2| + |B̃2| + |C̃2| + |D̃2| + |F| = 2n, therefore, |B̃2|, |C̃2|, |D̃2| ≥ n/2 − 3 and |F| ≥ 4.

Let us first solve the easier sub-case when |F| = 4. It follows form (8) that b = c = d = 1,

hence

|Ã2| = |B̃2| = |C̃2| = |D̃2| =
n

2
− 1.

Recall that all the vertices of F are either R∗-, G∗- or B∗-type. As |F| = 4, two of them, say

u and v, must have the same color type. Since the sizes of Ã2, B̃2, C̃2, D̃2 are all equal and our

coloring is symmetric, without loss of generality, we may assume that u and v are R∗-type, say

u is of R1-type and v is of R2-type. We may also assume that degR(u, A2), degR(u,C2) ≥ 4 and

degR(v, A2), degR(v,D2) ≥ 4. Then we add u to the set D′
2

and v to C′
2

and find a red Cn in

G[C̃2, D̃2] using Lemma 16.

When |F| = 5 or |F| = 6, we will need to look at the edges inside the sets A2,B2,C2 and D2,

and use the following claim.

Claim 23. If there are two vertices of type R∗ (B∗, G∗, respectively) and at least one red (blue,

green, respectively) edge inside any of the sets A2, B2,C2,D2 then we can find a red (blue, green,

respectively) Cn.

Proof. Suppose that there exist two vertices of type R∗, say u of type R1 and v of type R2. By

symmetry, we may assume that degR(u, A2), degR(u,C2) ≥ 4 and degR(v, A2), degR(v,D2) ≥ 4.

Let xy be any red edge in A2. We choose distinct red neighbors uA ∈ A2 \ {x, y}, uC ∈ C2 of u,

and vA ∈ A2 \ {x, y}, vD ∈ D2 of v.

Since the coloring induced by A2 ∪ B2 ∪C2 ∪ D2 is EC1(α)-complete, there is

• a (uA, x)-path P1 of length 2 in GR[A2, B2];

• a (vA, y)-path P2 of any even length between 2 and 2 min{|A2| − 3, |B2| − 1} in GR[A2 \

V(P1), B2 \ V(P1)];

• a (uC , vD)-path P3 of any odd length between 1 and 2 min{|C2|, |D2|} − 1 in GR[C2,D2].

Hence, P1 ∪ P2 ∪ P3 ∪ {uuA, uuC , vvA, vvD, xy} is a red cycle of any even length between 10 and

2 min{|A2|, |B2|} + 2 min{|C2|, |D2|} − 2 > n.

In particular, we can find a red Cn. The cases when xy is in B2, C2 or D2 are handled similarly.

Therefore notice that we cannot have |F| = 6. Indeed, as there are at most two special vertices

in each color, the only way to have |F| = 6 is if we have two vertices of type R∗, two of type B∗

and two of type G∗. Therefore, applying the above claim to each color, there is no way to color

any edge inside A2, B2,C2 and D2 without creating a Cn.

The last remaining case is |F| = 5. Without loss of generality we may assume that |D̃2| ≤

|B̃2|, |C̃2|, and hence

(|Ã2|, |B̃2|, |C̃2|, |D̃2|) =

(

n

2
− 1,

n

2
− 1,

n

2
− 1,

n

2
− 2

)

.
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By permuting the names of the colors (if needed), we may assume that F contains two vertices

r1, r2 of type R∗, two vertices b1, b2 of type B∗ and a vertex g of type G∗. Using the Claim 23,

we may assume that all the edges within A2, B2,C2,D2 are green.

We construct an auxiliary graph H with vertex set {r1, r2, b1, b2, A2, B2,C2,D2}. For all ver-

tices u, v ∈ V(H), we put {u, v} as an edge of H, except when {u, v} ⊂ {r1, r2, b1, b2}. We 3-multi-

color the edges of H in the following way: edges {U,V} with U,V ∈ {A2, B2, C2, D2} receive

only one color: the unique color that appears in G[U,V]; edges {u,V} with u ∈ {r1, r2, b1, b2} and

V ∈ {A2, B2,C2,D2} receive color red (blue, green, respectively) if degR(u,V) ≥ 4 (degB(u,V) ≥

4, degG(u,V) ≥ 4, respectively).

To finish the proof we need to treat 16 possibilities, according to how the vertices r1, r2, b1, b2

to connect A2, B2,C2,D2 in Definition 19. Although these possibilities are not symmetric, they

can be represented by one of the following four drawing (see Fig. 3), in which (X,Y,Z,W) is

some suitable permutation of (A2, B2,C2,D2).

Indeed, one can always draw H in a way that the red edges between Ã2, B̃2, C̃2, D̃2 are drawn

horizontally, the blue edges vertically and the green edges diagonally. After this, we can perform

horizontal and/or vertical reflections to position the vertices r1, r2 like in the Fig. 3. We then look

at the relative position of vertices b1 and b2. This gives us only four sub-cases to treat.

We will use X̃, Ỹ , Z̃, W̃ to denote Ã2, B̃2, C̃2, D̃2 and X′,Y ′,Z′,W ′ to denote A′
2
, B′

2
, C′

2
, D′

2
in

the correspondent order. For each of the four above drawings, we need to treat four possibilities,

according to which of the sets X̃, Ỹ , Z̃, W̃ has order n/2 − 2.

If in any drawing below |X̃| = n/2 − 2 or |Ỹ | = n/2 − 2, then we could add r1 to W ′ and r2 to

Z′ and find a red Cn in G[Z̃, W̃] using Lemma 16.

In sub-cases 2a and 2c, if |W̃ | = n/2−2, then we could add b1 to X′ and b2 to Z′ and find a blue

Cn in G[X̃, Z̃], also using Lemma 16. In a similar way, in sub-cases 2b and 2d, if |Z̃| = n/2 − 2,

then we could find a blue Cn in G[Ỹ , W̃].

The next 2 possibilities require a little more work.

Sub-case 2a and |Z̃| = n/2 − 2: If the edge {b2,W} was blue, then the vertex b2 would be of

type B1. But there cannot be two vertices of type B1 in F by Claim 20. If the edge {b2,W} was

red, then we could add b2 and r2 to the set Z′ and r1 to the set W and find a red Cn in G[Z̃, W̃] by

Lemma 16. Therefore, {b2,W} must be green-exclusive. A similar argument shows that {b1,W}

must also be green-exclusive. Hence,

degG(b1,W), degG(b2,W) ≥ |W | − 6.

But now we can add b1 and b2 to the set X′ and obtain that |X̃| = n/2+1 and |W̃ | = n/2−1. Since

all the edges within X are green, we find a path of length 2 in X and extend this path to a cycle

of length n in G[X̃, W̃] using Lemma 17.

Sub-case 2b and |W̃| = n/2 − 2: Here the edge {b2,Y} cannot be blue (otherwise we would

have two vertices of type B1) and cannot be red (otherwise we could add b2 to X′ and r2 to Y ′

and find a red Cn by Lemma 16). Therefore, {b2,Y} must be green-exclusive. Similarly, the edge

{r2,Z} cannot be red (otherwise we would have two vertices of type R1) neither blue (otherwise

we could add b2 to Z′ and r2 to X′ and find a blue Cn in G[X̃, Z̃] using Lemma 16). Therefore,

{b2,Y} must be green-exclusive. Then, however, we can add r2 to Y and b2 to Z′ and find a green

Cn in G[Ỹ , Z̃] using Lemma 16.

The last two possibilities are very similar to the previous two, so we only indicate the edges

that we must look at.
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r1 r2
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r1 r2

b1

b2

X Y

Z W

Sub-case 2c

r1 r2

b1

b2

X Y

Z W

Sub-case 2d

red green blue

Figure 4: Possibilities for H

Sub-case 2c and |Z̃| = n/2 − 2: First, observe that the edges {b2,Y} and {r1,Y}must be both

green-exclusive. Furthermore, {b1,Y} must be green-exclusive as well. Then we add b1, b2 and

r1 to the set Z′, find a path of length 2 in Z and use Lemma 17 to find a green Cn in G[Ỹ , Z̃].

Sub-case 2d and |W̃| = n/2 − 2: Here, both the edges {b2,Y} and {r1,Y} must be green-

exclusive. Then, after we add b2 and r1 to the set Z′, find a path of length 2 in Z and we apply

Lemma 17 to find a green Cn in G[Ỹ , Z̃].

8. Proof of Lemma 6

We set

α6 = 10−18
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and consider any α ≤ α6. Note that, for every δ ≤ α, any coloring of type EC2 (α, δ) is also of

type EC2 (α, α), hence, we may assume that δ = α. Take

n6 = ⌈α
−6⌉.

Consider any 3-coloring of G = K2n of type EC2(α, α) and let A ∪ B ∪ C ∪ D be a partition

of V := V(G) satisfying both conditions (a), (b) of EC2(α, α). Similarly to the proof of Lemmas

5 and 7, a vertex v ∈ A has “low” degree if

degR(v, B) < (1 − α1/2)|B|, degG(v,C) < (1 − α1/2)|C|, or degB(v,D) < (1 − α1/2)|D|;

a vertex v ∈ B has “low” degree if

degR(v, A) < (1 − α1/2)|A|, degG(v,C) < (1 − α1/2)|C|, or degB(v,D) < (1 − α1/2)|D|;

a vertex v ∈ C has “low” degree if

degG(v, A ∪ B) < (1 − α1/2)(|A| + |B|),

and, finally, a vertex v ∈ D has “low” degree if

degB(v, A ∪ B) < (1 − α1/2)(|A| + |B|).

By the condition (b) in EC2 (α, α), it follows that the number of low degree vertices in A (B, C,

D, respectively) is at most 6α1/2|A| (6α1/2|B|, α1/2|C|, α1/2|D|, respectively). Together, there are

at most 28α1/2n low degree vertices that we put into a new set say E1. We define A1 := A \ E1,

B1 := B \ E1, C1 := C \ E1, D1 := D \ E1.

Thus, all the vertices in A1∪B1 are adjacent to at least (1−2α1/2)|C| ≥ (1−2α1/2)|C1| vertices

in C1 by green edges and all the vertices in C1 are adjacent to at least (1 − 7α1/2)(|A| + |B|) ≥

(1 − 7α1/2)(|A1| + |B1|) by green edges. A similar statements hold for other colors and sets. If

|C1| ≥ n/2, then we greedily find a monochromatic Cn in [C1, A1∪B1] because every two vertices

of C1 have (1 − 14α1/2)(|A1| + |B1|) common neighbors and

|A1| + |B1| ≥ 2(1 − α)
2n

4
− 28α1/2n >

n

2(1 − 14α1/2)
.

By the same type of argument we are also done if |D1| ≥ n/2. Hence suppose that |C1| = n/2 − c

and |D1| = n/2 − d for some c, d > 0. From |E| ≤ 28α1/2n and condition (a) in EC2 (α, α) it

follows that c, d ≤ 29α1/2n.

We claim that there is neither a green path in A1 ∪ B1 of length 2c nor a blue path in A1 ∪ B1

of length 2d. To the contrary, suppose that P is such a green path in A1 ∪ B1, with length 2c and

endpoints a1 and a2.

Since all the vertices in A1 ∪ B1 have high green degrees to C1, we find c1 , c2 ∈ C1 such

that a1c1, a2c2 are green. Now, every two vertices in C1 have at least

(1 − 14α1/2)(|A1| + |B1|) − 2c ≥ 2(1 − α)
2n

4
− 28α1/2n − 2 · 29α1/2n ≥

n

2
> |C1|

common green neighbors in A1 ∪ B1 \V(P). Hence, we greedily find a green (c1, c2)-path P′ that

avoids V(P) and saturates all the vertices of C1. Then P ∪ P′ is a green monochromatic Cn.
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Consequently, A1 ∪ B1 contains at most

(2c − 1)
|A1| + |B1|

2
≤ 29α1/2n

(

2n − 2

(

n

2
− 29α1/2n

))

≤ 58α1/2n2

green edges and at most (2d − 1)(|A1| + |B1|)/2 ≤ 58α1/2n2 blue edges. We again remove from

A1 and B1 all the vertices adjacent to more than α1/6n vertices of A1 ∪ B1 by green or blue edges

and put them into E1. Call the new sets A2, B2, C2, D2 and E2 (we set C2 := C1 and D2 := D1).

Note that we removed at most α1/6n vertices, and so |E2| ≤ 2α1/6n. Therefore, GR[A2 ∪ B2] has

minimum degree |A2 ∪ B2| − 3α1/6n.

If |A2 ∪ B2| ≥ n, then |A2 ∪ B2| − 3α1/6n > |A2 ∪ B2|/2. Hence, GR[A2 ∪ B2] contains Cn by

Theorem 13.

Otherwise, |A2 ∪ B2| < n and nAB := n − |A2 ∪ B2| ≥ 1. We also notice that n/2 − |C2| =

n/2− |C1| = c and n/2− |D2| = n/2− |D1| = d. Suppose there is c ≤ 29α1/2n vertices e1, . . . , ec in

E2, each with at least 2c green neighbors in A2 ∪ B2. For each ei, take two of its green neighbors

ai, bi ∈ A2 ∪ B2. Since ei has 2c such neighbors, we can select all ai, bi distinct.

Next, we find a green neighbor c1 ∈ C2 of a1, a green neighbor ck+1 ∈ C2 of bk, and for all

bi−1, ai, where i = 2, . . . , k, a common green neighbor ci ∈ C2. Again, all ci’s may be chosen

distinct because any two vertices in A2 ∪ B2 have at least

(1 − 4α1/2)|C1| = (1 − 4α1/2)|C2| ≥ (1 − 4α1/2)

(

n

2
− 29α1/2n

)

> 58α1/2n > 2c

common green neighbors in C2. Finally, we may greedily find a green (c1, ck+1)-path avoiding

all ai, bi, ci’s and saturating the remaining vertices of C2, because all the pairs of vertices in C2

have a large common neighborhood to A2 ∪ B2:

(1 − 14α1/2)(|A1| + |B1|) − α
1/6n ≥ 2(1 − α)

2n

4
− 28α1/2n − α1/6n

≥
n

2
+ 58α1/2n > |C2| + 2c.

Hence, we only need to settle the case in which there are less than c vertices in E2 that have

at least 2c green neighbors in A2 ∪ B2. In the same way, we may also assume that less than d

vertices in E2, have at least 2d blue neighbors in A2 ∪ B2.

Thus, there are at least 2n−|A2∪B2|−|C2|−|D2|−(c−1)−(d−1) > n−|A2∪B2| = nAB vertices

in E2, each with at least |A2∪B2|−2(c+d) > 2|A2∪B2|/3 red neighbors in A2∪B2. Let F be a set

with any nAB of these vertices. Since nAB = |F| ≤ |E2| ≤ 2α1/6n, the graph GR[A2∪B2∪F] has the

minimum degree at least 2|A2∪B2|/3 > |A2∪B2∪F|/2. Since |A2∪B2|+ |F| = |A2∪B2|+nAB = n,

it contains a red Cn by Theorem 13.
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paths”, Combinatorica 28 (2008), no. 4, 499–502.

[9] Y. Kohayakawa, M. Simonovits, and J. Skokan, The 3-colored Ramsey number of odd cycles, submitted, 2008.

[10] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics,
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