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Abstract: In this article we study multipartite Ramsey numbers for odd
cycles. Our main result is the proof that a conjecture of Gyárfás et al.
(J Graph Theory 61 (2009), 12–21), holds for graphs with a large enough
number of vertices. Precisely, there exists n0 such that if n≥n0 is a
positive odd integer then any two-coloring of the edges of the complete
five-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 contains a monochromatic
cycle of length n. � 2011 Wiley Periodicals, Inc. J
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1. INTRODUCTION

For graphs L1, . . . ,Lk, the Ramsey number R(L1, . . . ,Lk) is the minimum integer N such

that for any edge-coloring of KN , the complete graph on N vertices, by k colors, there

exists a color i for which the corresponding color class contains Li as a subgraph.

Ramsey numbers have been studied by many authors for many classes of graphs.

Here, we are interested in aspects of Ramsey numbers for cycles. The particular

case where the graphs L1, L2 are cycles of length n, denoted by Cn was raised by
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Bondy and Erdős [6] and it was fully solved by Faudree and Schelp [8], and indepen-

dently by Rosta [18]. They have proved, among other things, that

R(Cn,Cn)=

⎧⎪⎨
⎪⎩

6 n=3 or 4,

2n−1 if n is odd, n≥5,

3n / 2−1 if n is even, n≥6.

Bondy and Erdős [6] conjectured that if n>3 is odd, then

R(Cn,Cn,Cn)=4n−3. (1)

Kohayakawa et al. (submitted) proved that there exists an n0 such that Equation (1)

holds for every n odd with n>n0.

The case when n is even differs from the case when n is odd. Benevides and

Skokan [2] proved that there exists an integer n1 such that for every even n>n1

R(Cn,Cn,Cn)=2n. (2)

Recently, there has been interest to see what happens to the Ramsey numbers when

we allow fixed edge deletions from the complete graph KN . In particular, if we delete

complete subgraphs Kr.

For example, a tripartite version of the Gerencsér-Gyárfás Theorem was given by

Gyárfás et al. [13], i.e., it was proved that the Ramsey number for a path is about the

same when two-colorings of a complete graph or a balanced complete tripartite graph

are considered. In an article of Nikiforov and Schelp [17], it was shown, among other

things, that for any odd n≥5 if we delete the edges of a complete subgraph of order

(n−1) /2 from the complete graph of order 2n−1 and we two-color the rest, we can

still guarantee a monochromatic Cn. And in a recent article of Gyárfás et al. [12], the

following theorem in the same direction was proved.

Theorem 1. For all 0<�<1 /2, there exists an n1=n1(�) with the following prop-
erties. For any odd integer n>n1, in any two-coloring of the edges of the complete
five-partite graph of order (2+�)n with five parts of size g(1),g(2),g(3),g(4) and g(5),

where we have n / 2≥g(1)≥g(2)≥g(3)≥g(4)≥g(5)≥�n, there is a monochromatic Cn.

In this article we prove that an exact result generalizing the above theorem holds for

sufficiently large n. This result was conjectured in the same article where Theorem 1

appeared [12]. More precisely, we prove the following main theorem.

Theorem 2. There exists n2 such that, for any odd integer n≥n2, in any two-coloring
of the edges of the complete five-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a
monochromatic Cn.

Notice that the graph we are coloring above is obtained from a K2n−1 by making

four big ‘holes’ of order (n−1) /2 each. This is somewhat surprising and sharp, since

if we had made only a single hole of order (n+1) /2, instead of four holes of order

(n−1) /2, there is no guarantee that we can find a monochromatic Cn. In fact, let

A⊂V=V(K2n−1) with |A|= (n+1) /2 and consider the graph obtained by the removal

of the edges spanned by A from K2n−1. Split the vertices V \A into two sets B and

C with |B|= (n−1) /2 and |C|=n−1. Color all the edges within B, within C, and
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between A and B by red; and color the remaining edges, i.e., those between A∪B and

C, by green. It is easy to see that there is no monochromatic Cn.

Furthermore, the total number of edges removed is almost one-fourth of the total

number of edges, which seems to be a substantial number of edges to remove without

losing the property that we find a monochromatic Cn among the remaining colored

edges. In fact, one can think about the removed edges as a third color, but one in which

it is not satisfying to find a monochromatic cycle. From Equation (1), if we had no

restrictions on that third color, we would need 4n−3 vertices (instead of 2n−1) in

order to guarantee a monochromatic Cn.

2. NOTATION

Our notation is standard. Nevertheless, we emphasize a few points here.

We note that the subscripts for an absolute or relative constant in a theorem/lemma

are equal to the reference number of the theorem/lemma. This makes it much easier

for the reader to find the place where a constant is defined.

For graphs, unless otherwise stated, the first subscripts indicate the number of

vertices, e.g., Cn is the cycle with n vertices and Pn is the path with n vertices. The

length of a path is a number of its edges and, if x is its first vertex and x′ is its last

vertex, then we call it an (x,x′)-path. Given a set X of vertices of a graph G, G[X]

denotes the subgraph induced by the edges with both ends in X and G\X denotes the

subgraph obtained by deleting the vertices of X and the edges incident to the deleted

vertices.

For a multipartite graph G, we shall work with its multipartite complement, G,

defined as the graph we obtain from the usual complement of G by deleting all edges

within the classes in the given vertex partition.

Given two disjoint nonempty sets of vertices X and Y , E(X,Y) denotes the set of all

the edges with one end in X and the other one in Y . We also set e(X,Y)=|E(X,Y)| and

d(X,Y)= e(X,Y)

|X||Y | .

We denote by G[X,Y] the bipartite subgraph of G with bipartition X∪Y and the edge

set E(X,Y), and in general for disjoint sets X1,X2, . . . ,Xk we denote by G[X1,X2, . . . ,Xk]

the multipartite graph induced by the edges of G from Xi to Xj for every i �= j.
Whenever we speak about colorings, we mean edge-colorings. Mostly we use two

colors, red and green. Sometimes a third color will be needed and for that we use blue.

The subgraphs induced by the edges of a given color are indicated by superscripts:

Gr is the red subgraph of G. But for the corresponding graph theoretical parameters

such as number of edges or degrees we use subscripts: er(X,Y) denotes the number of

red edges joining X to Y in an edge-colored graph. If an edge xy of G is red, we say

that y is a red neighbor of x (and vice-versa). For a vertex x, N(x) denotes the set of

all vertices adjacent to x and we set deg(x,Y)=|N(x)∩Y | (the degree of x to Y) and

degr(x,Y)=|Nr(x)∩Y | (the red degree of x to Y). The maximum degree of a vertex in

G is denoted by �(G) and the minimum degree is denoted by �(G).

A graph Gn is called �-dense if it has at least �(
n
2

) edges. A bipartite graph with

parts of order k and � is �-dense if it contains at least �k� edges.
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A matching M in a graph G is a set of pairwise vertex-disjoint edges. We denote

the number of edges in M by e(M). A connected matching is a matching M such that

all the edges of M are in the same component C of G. We say that M is an odd
connected matching, if the component C is not bipartite. Finally, we say that M is a

monochromatic connected matching, if it is a connected matching within the graph

induced by one of the colors.

3. EXTREMAL COLORINGS AND STABILITY

In this article, we will use a variant of a stability theorem of Gyárfás, Ruszinkó, Sárközy,

and Szemerédi [10, 11], stated by Benevides and Skokan [1, 2]. But before we can

state this theorem we need to define particular (extremal) colorings. It is convenient,

as we shall notice later, to consider three-multicolorings instead of three-colorings. In

a three-multicoloring of a graph G, some of its edges can be assigned more than one

color. We say that an edge is exclusive of color c, for c∈{(r)ed, (g)reen, (b)lue}, if it is

assigned color c only. We denote by Gc∗ the subgraph induced by the edges exclusively

colored by C.

Now, we define the three types of colorings:

Coloring 1 (EC1(�,�) type). A three-multicoloring of a graph G is of type EC1(�,�),

where 0≤�,�<1, if there exists a partition A∪B∪C∪D of V(G) such that

(a) |A|, |B|, |C|, |D|≥ (1−�)|V(G)| / 4.
(b) The bipartite graphs Gr∗ [A,B],Gr∗ [C,D],Gg∗ [A,D],Gg∗ [B,C],Gb∗ [A,C], and

Gb∗[B,D] are (1−�)-dense.

Coloring 2 (EC2(�,�) type). A three-multicoloring of a graph G is of type EC2(�,�),

where 0≤�,�<1, if there exists a partition A∪B∪C∪D of V(G) such that

(a) |A|, |B|, |C|, |D|≥ (1−�)|V(G)| / 4.
(b) The bipartite graphs Gr∗ [A,B], Gg∗ [A∪B,C], and Gb∗ [A∪B,D] are (1−�)-

dense.

Coloring 3 (EC3(�,c1,c2,�) type). A three-multicoloring of a graph G is of type
EC3(�,c1,c2,�), where 0≤�, c1, c2, �<1, if there exists a partition A∪B∪C∪D of
V(G) such that

(a) |A|, |B|, |C|≥ (1−c1�)|V(G)| / 4, |D|≥�|V(G)| / 4.
(b) |A|≥max{|B|, |C|, |D|}+�|V(G)| / 4, |A∪D|≤ (1+c2�)|V(G)| / 2.
(c) The bipartite graphs Gr∗[A,B], Gr∗ [C,D], Gr∗ [A,D], Gg∗[B,C], Gb∗[A,C] and

Gb∗ [B,D] are (1−�)-dense (Fig. 1).

Now we can state the variant of the stability lemma of Gyárfás et al. [10, 11].

Theorem 3 (Benevides [1] and Benevides and Skokan [2]). Given �0>0 and �0>0,

there exists positive reals �3, �3, and �3, �3<�0, such that for all �<�3 there exists
a positive integer n3=n3(�,�3,�3,�0) such that the following holds. If n≥n3 and a
(1−�)-dense graph Gn of order n is three-multicolored, then one of the following cases
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FIGURE 1. Three different types of colorings.

occurs:

(a) Gn contains a monochromatic connected matching of with least (1 /4+�3)n
edges;

(b) the coloring is of type EC1(�0,�0), or EC2(�0,�0), or EC3(�3,0.7,0.2,�1/3).

Remark 4. In a multicoloring, we consider a set E of edges monochromatic if there

is a color c such that all edges in E have been colored with c. However, note that we

do not require the edges in E to be colored exclusively by c.

The proof of Theorem 3 is essentially the same as in [10] and it can be found

in [1]. This theorem was used in [10] to compute R(Pn,Pn,Pn) and in [2] to compute

R(Cn,Cn,Cn) when n is even. It basically says that either we find a large monochromatic

connected matching or the coloring of the graph can be well described. Later in this

article, we will use this theorem to prove Theorem 13 which, in turn, will be used in

the proof of Theorem 2. Theorem 13 involves other two different types of colorings,

this time, two-multicolorings of a four-partite graph. We define those colorings here,

but we will state Theorem 13 only when needed, in Section 5.

Coloring 4 (ECA(�,�) type). A two-multicoloring of a four-partite graph G is of type
ECA(�,�), where 0≤�,�<1, if there exists disjoint sets of vertices A, B, C and D such
that

(a) |A|, |B|, |C|, |D|≥ (1−�)|V(G)| / 4 and each of A, B, C and D is an independent
set.

(b) The bipartite graphs Gg∗[A,D] and Gg∗[B,C] have maximum degree at most
�|V(G)|.

(c) The bipartite graphs Gr∗ [A,B] and Gr∗ [C,D] have maximum degree at most
�|V(G)|.

Remark 5. Condition (a) implies that at most �|V(G)| vertices do not belong to

A∪B∪C∪D.

Coloring 5 (ECB(�,�) type). A two-multicoloring of a four-partite graph G, whose
vertex partition (into independent sets) is given, say V(G)=U1∪U2∪U3∪U4, is of
type ECB(�,�), where 0≤�,�<1, if there exists disjoint sets X, Y⊆V(G) for which,
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FIGURE 2. Two other types of colorings.

letting Xi=Ui∩X, Yi=Ui∩Y (1≤ i≤4), we have

(a) |X|, |Y |≥ (1−�)|V(G)| / 2.
(b) For 1≤ i≤4, the bipartite graph Gr∗ [Xi,

⋃
j�=i Yj] has maximum degree at most

�|V(G)|.
(c) For 1≤ i≤4, the bipartite graph Gr∗ [Yi,

⋃
j�=i Xj] has maximum degree at most

�|V(G)|.
(d) The multipartite graphs Gg∗[X1,X2,X3,X4] and Gg∗[Y1,Y2,Y3,Y4] have maximum

degree at most �|V(G)|.

Remark 6. Condition (a) implies that at most �|V(G)| vertices do not belong to X∪Y
(Fig. 2).

The remainder of this article is organized as follows: in Section 4 we present

Szemerédi’s Regularity Lemma; in Section 5 we state (without proofs) our main tools,

one theorem and two lemmas, and use them to prove Theorem 2; in Sections 6 and 7,

we give the missing proofs. Finally, in Section 8 we post some concluding remarks

and conjectures.

4. REGULARITY LEMMA FOR GRAPHS

Szemerédi’s Regularity Lemma [19] asserts that each graph of positive edge-density

can be approximated by the union of a bounded number of random-like bipartite graphs.

Before it can be stated formally, the concept of 	-regular pairs needs to be defined.

Definition 7. Let G= (V ,E) be a graph and let 0<	≤1. We say that a pair (A,B) of

two disjoint subsets of V is 	-regular (with respect to G) if

|d(A′,B′)−d(A,B)|<	

holds for any two subsets A′ ⊂A, B′ ⊂B with |A′|> 	|A|, |B′|> 	|B|.
This definition states that a regular pair has uniformly distributed edges. In the next

section, we will make implicitly use of the following fact about regular pairs.

Journal of Graph Theory DOI 10.1002/jgt
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Fact 8. Let G be a bipartite graph with bipartition V(G)=V1∪V2 such that the pair
(V1,V2) is 	-regular with density d=d(V1,V2). Then all but at most 	|V1| vertices v∈V1

satisfy deg(v)≥ (d−	)|V2|.
The next lemma about regular pairs is a slightly stronger version of Claim 3 from

[16]. The version in [16] is the case where �=1. Both statements have the same proof

that we omit here.

Lemma 9. For every 0<�<1, there exists an n9 such that for every n>n9 the
following holds: Let G be a bipartite graph with bipartition V(G)=V1∪V2 such that
|V1|, |V2|≥n. Furthermore, let the pair (V1,V2) be 	-regular with density at least � / 4

for some 	 satisfying 0<	<� / 100. Then for every �, 1≤�≤n−5	n /�, and for every
pair of vertices v′ ∈V1, v′′ ∈V2 satisfying deg(v′), deg(v′′)≥�n / 5, G contains a path of
length 2�+1 connecting v′ and v′′.

The regularity lemma of Szemerédi [19] enables us to partition the vertex set V(G)

of a graph G into t+1 sets V0∪V1∪· · ·∪Vt in such a way that almost all the pairs

(Vi,Vj) satisfy Definition 7 for some small 	. Its precise statement, extended to more

than one graph, is as follows.

Theorem 10. For every 	>0 and for all positive integers s and m, there exist integers
N10=N10(	,s,m) and M10=M10(	,s,m) with the following property: for all graphs
G1, . . . ,Gs with the same vertex set V , |V|≥N10, there is a partition of V into t+1 sets

V=V0∪V1∪· · ·∪Vt

such that

(a) m≤ t≤M10,

(b) |V0|≤	n, |V1|=· · ·=|Vt|, and
(c) all but at most 	( t

2
) pairs (Vi,Vj), 1≤ i< j≤ t, are 	-regular with respect to each

Gk, 1≤k≤s.

Remark 11. The original regularity lemma refers to the case s=1. The proof is

(basically) the same for an arbitrary but fixed number s of graphs. This version is used,

for example, in [7], and formulated in the survey [14].

Remark 12. The sets Vi in the partition given by this lemma are called clusters.

When the lemma is applied to a multipartite graph, we can assume that each of those

clusters is contained in one of the parts.

5. MAIN TOOLS AND PROOF OF THEOREM 2

Our main tool is the following theorem, whose proof we postpone to Section 6.

Theorem 13. Given �1, there exists positive reals �13, �13 >0 such that for every
�<�13 there exists n13=n13(�,�13) such that for any n>n13 the following holds: if G is
a four-partite graph on n vertices such that each part has at least (1 /4−�)n vertices and
its multipartite complement G satisfies �(G)≤�n, then for any two-multicoloring of G,

Journal of Graph Theory DOI 10.1002/jgt

299RAMSEY NUMBER FOR ODD CYCLES



8 JOURNAL OF GRAPH THEORY

either we find an odd connected monochromatic matching of size at least (1 /4+�13)n
edges or the coloring is of type ECA(�1,�1) or ECB(�1,�1).

We will also need the following two lemmas, which we will prove in later sections

as well.

Lemma 14. For n≥3 odd, let G=K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only
vertex of degree 2n−2 and let H=G\{u}. There exists �14 >0 such that, for all
�≤�14 and �≤�, there is a positive integer n14 with the following property: for every
odd n≥n14, every two-coloring of G, such that the induced coloring in H is of type
ECA(�,�), contains a monochromatic Cn.

Lemma 15. For n≥3 odd, let G=K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only
vertex of degree 2n−2 and let H=G\{u}. There exists �15 >0 such that, for all
�≤�15 and �≤�, there is a positive integer n15 with the following property: for every
odd n≥n15, every two-coloring of G, such that the induced coloring in H is of type
ECB(�,�), contains a monochromatic Cn.

Now we restate Theorem 2 for easy reference and we give a sketch of the proof

before the full proof is shown.

Theorem 2. There exists n2 such that, for any odd integer n≥n2, in any two-coloring
of the edges of the complete five-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a
monochromatic Cn.

We shall consider a two-coloring of the graph G=K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, say

(Gr,Gg), where n is odd and n>n0. Let u be the (only) vertex of G of degree 2n−2.

We apply the regularity lemma (Theorem 10) with carefully chosen 	, m and with

s=2 to the graphs Gr\{u},Gg\{u} and obtain a partition V0∪V1∪· · ·∪Vt of V(G)\{u}
satisfying conditions (a)–(c) in Theorem 10. Using this partition, we define the so-called

reduced graph R and also an appropriate two-multicoloring of its edges: the vertex set

of R is {1, . . . , t}, we have an edge between i and j if and only if (Vi,Vj) has density at

least 	1/3 /2 and is an 	-regular pair with respect to Gr and Gg, and an edge ij is colored

by red (resp. green) if Gr[Vi,Vj] (resp. Gg[Vi,Vj]) has edge density at least 	1/3 /4.

By Remark 12, we can assume that the reduced graph R is four-partite. Then, we

apply Theorem 13 to R, which will lead us to one of three cases: either R has a

monochromatic connected odd matching of a certain size or its two-multicoloring is

of type ECA or of type ECB. In the first case, we use the matching in R to find a copy

of Cn in G of the same color of the matching by applying Lemma 9 many times. This

will be very similar to what is done in Section 5 of [2], except that here we will need

to find an odd cycle while in [2] an even one was needed. In the other two cases,

we prove that the original coloring of G must be of the same type as the coloring

of R. In this case, we apply Lemma 14 or Lemma 15 to the original graph G to find a

monochromatic Cn in G.

Proof. We start by choosing some parameters.

Let �1=min{(�14 /10)2, (�15 /10)2,1 /20} so that, in particular, we can input

�=�=10
√

�1 to Lemmas 14 and 15 and get n14=n14(10
√

�1,10
√

�1) and n15=n15

(10
√

�1,10
√

�1). Passing �1 to Theorem 13, we obtain �13=�13(�1) and �13=�13(�1).

Journal of Graph Theory DOI 10.1002/jgt
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We define

	= 1

2
min

{
(�13 /2)2,1 /106,

�3
1

1000
,

�2
13

2000

}
. (3)

Let �=2
√

	 and notice that �<�13. With this �, Theorem 13 yields n13=n13(�,�13).

We also set m=max{2n13,1 / 	} and, from Theorem 10, we obtain N10=N10(	,2,m)

and M10=M10(	,2,m). Then we may finally choose

n2=max

{
n14,n15,N10,2M10n9,

M2
10

	1/3

}
. (4)

Consider any two-coloring (Gr,Gg) of G=K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 with n odd

and n>n2. We denote V(G)=U1∪U2∪U3∪U4∪{u}, where U1, U2, U3, U4 are the

independent sets of order (n−1) /2 and u is the (only) vertex of degree 2n−2. We

apply the regularity lemma (Theorem 10) to the pair of graphs Gr\{u} and Gg\{u},
with parameters 	 and m chosen as above (and s=2).

Let V=V(G)=V0∪V1∪· · ·∪Vt be the partition guaranteed by this lemma, thus

satisfying

(a) m≤ t≤M10,

(b) |V0|≤	(2n−2), |V1|=· · ·=|Vt|, and

(c) all but at most 	( t
2

) pairs (Vi,Vj), 1≤ i< j≤ t, are 	-regular with respect to both

Gr and Gg.

By Remark 12, we can assume that each Vk, 1≤k≤ t, is a subset of Ui for some i,
1≤ i≤4.

Now we define a reduced graph R in the following way: the vertex set of R is

{1, . . . , t} and we have an edge between vertices i and j if and only if Vi and Vj are

contained in different sets of the partition {U1,U2,U3,U4} and (Vi,Vj) is an 	-regular

pair with respect to both Gr and Gg. Note that, by definition, R is a four-partite graph,

say V(R)=X1∪X2∪X3∪X4, with Xi={k :Vk⊂Ui,1≤k≤ t}. It is easy to see that, all

sets Xi have approximately the same order. More precisely, if we denote ti=|Xi|, then

ti≥ (1 /4−	)t, for 1≤ i≤4. In fact, for any 1≤ i≤4 and for an arbitrary k �=0, the above

property (b) implies that

ti
2n−2

t
≥ ti|Vk|=|Ui|−|Ui∩V0|≥

(
1

4
−	

)
(2n−2)

and the previous statement follows.

It is convenient here to work on graphs with high degree (rather than simply on dense

graphs). So, we start by cleaning up R. We throw away a (small) set of vertices that

do not have high degree. Let F={v∈V(R) :degR(v)≥√	t}, where R is the multipartite

complement of R. We have

|F|√	t≤2e(R)≤2	

(
t

2

)
,

where the second inequality follows from property (c) above. Then, |F|≤√	(t−1)<
√

	t.
We consider the graph H induced by V(R)\F and denote t′ = |V(H)| and X′i=Xi\F.
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Clearly, t′ ≥ (1−√	)t. Therefore

�(H)≤√	t≤
√

	

1−√	
t′ ≤2

√
	t′ =�t′

and

|X′i |≥ (1 /4−	)t−√	t≥ (1 /4−2
√

	)t≥ (1 /4−2
√

	)t′ = (1 /4−�)t′.

We define a two-multicoloring (Hr,Hg) of H in the following way: for c∈{r,g},
and ij∈E(H) we put ij into Hc if ec(Vi,Vj)≥	1/3|Vi||Vj| / 4. Because t′ ≥ (1−√	)t≥
(1−√	)m≥m / 2≥n13, by the above conditions on |X′i | and �(H) and since �<�13, we

can apply Theorem 13 (with parameters �1, �13, �) to H so that either we find an odd

monochromatic connected matching M of size t1≥ (1 /4+�13)t′ or we conclude that

the coloring of H is of type ECA(�1,�1) or ECB(�1,�1). We analyze each of these three

cases below.

Case 1. There is an odd monochromatic connected matching M of size t1 in H,

t1≥ (1 /4+�13)t′. Note that

(1 /4+�13)t′ ≥ (1 /4+�13)(1−√	)t≥ (1 /4+�13 /2)t.

Without loss of generality assume that M is red and let aibi, 0≤ i< t1, be all the edges

of M. Let K be the red (non-bipartite) component containing M.

First, we will find, in K, a closed red walk of odd length which contains all edges

of M. Take a spanning tree T of K such that E(T) contains all edges of M (this can

be done, for example, using Krushal’s algorithm, i.e., starting with the edges of K and

carefully adding new edges until we get a spanning tree). Let Z be the closed minimal

walk containing all the edges of T . Such a walk contains each edge of T exactly twice;

therefore, it has some even length which is smaller than 2t.
Consider some arbitrary vertex r of T and look at the levels of T as a rooted tree with

root r. Since K is a non-bipartite component, there must exists a red edge xy /∈E(T),

such that x and y are in levels of same parity, i.e., the lengths of the unique paths from

x to r and from y to r in T have the same parity. Therefore, the unique path Pxy from

x to y contained in Z has even length. So, we can construct a walk W by taking Z and

replacing Pxy by the edge xy. It is clear that W is a closed walk, it has odd length and

it contains every edge of M (at least once), as desired. Let W= i1i2 . . . i�i1.

To finish this case, one uses the walk W and standard regularity arguments to build

a red Cn in the original graph G. The same technique was used earlier in results about

even cycles by Benevides and Skokan [2]. Similar ideas are also applied by Gyárfás

et al. [12], by Gyárfás and Szemerédi [10] and even earlier by Łuczak [16]. Nevertheless,

we do the all the computations here for completeness.

For each j, with 0≤ j≤�, we say that a vertex in the set Vij is “good” if it has at

least 	1/3|Vij−1
| / 4 red neighbors in each of Vij−1

and Vij+1
, where we set Vi0=Vi� and

Vi�+1
=Vi1 ; and we say that a vertex is “bad” otherwise. Note that for any j, by Fact 8

applied to (Vij ,Vij+1
) and to (Vij ,Vij−1

), at most 2	|Vij | vertices of Vij are bad. The next

step in the proof is to construct a (small) cycle C̃=vi1vi2 . . .vi� with vij ∈Vij such that

all its vertices are good. We emphasize that while we may have Vik=Vij , for some

numbers k, j with k �= j, the vertices vij of C are chosen to be pairwise distinct. Starting
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with any good vertex vi1 in Vi1 , one can greedily build a path P=vi1vi2 . . .vi�−2
with

vij ∈Vij such that all its vertices are good: for each 1≤ j≤�−3 let vij+1
be any red good

neighbor of vij in Vij1
. Such good neighbor exists as

	1/3

4
|Vij−1

|−2	|Vij |− j≥	|Vij |>1.

To prove the existence of the cycle C̃ from the existence of P, consider the set A of

good neighbors of vi�−2
in Vi�−1

and the set B of good neighbors of vi1 in Vi� . As

before, we have |A|, |B|≥	|Vi1 |. Because the pair (Vis−1
,Vis) is 	-regular with density

at least 	1/3 /4, it follows that G[A,B] has density at least 	1/3 /4−	≥	1/3 /5. Therefore,

G[A,B] has at least 	1/3|A||B| / 5 edges. This number is greater than one by the choice

of n. Letting vis−1
vis be any edge in G[A,B], we have that vi1vi2 . . .vis−1

vis is a cycle as

desired.

Finally, we show that we can use Lemma 9, to replace the edges of C̃ corresponding

to edges of M by long paths in such a way that the resulting larger cycle is a Cn. For

each edge akbk of M, we choose a natural number �k satisfying

1≤�k≤ (1−10	2/3)min{|Vak |−2t, |Vbk |−2t}
in such a way that

t1−1∑
k=0

2�k=n−�.

This is possible because n−� is even, n−�≥2t≥2t1 and
∑t1−1

k=0 2�k can attain any

even value between 2t1 and

t1−1∑
i=0

2(1−10	2/3)min{|Vak |−2t, |Vbk |−2t}

≥2t1(1−10	2/3)

(
(1−	)(2n−2)

t
−2t

)

≥
(

1

2
+�13

)
t(1−10	2/3)

(1−2	)(2n−2)

t

≥ (1+�13)n>n−�.

Finally, we set V ′ak
= (Vak \C̃)∪{vak }, V ′bk

= (Vbk \C̃)∪{vbk} and notice that

|V ′ak
|≥|Vak |−|C̃|≥|Vak |−2t≥|Vak |−2M10≥ |Vak |

2
≥ (1−	)(2n−2)

2M10

>n9

and, similarly

|V ′bk
|≥ |Vbk |

2
>n9.
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Hence, Gr[V ′ak
,V ′bk

] is (2	)-regular with density at least 	1/3 /4−	> 	1/3 /5 and we

can apply Lemma 9 (with �= 	1/3) to Gr[V ′ak
,V ′bk

]. Since

1≤�k≤ (1−5	2/3)min{|Vak |−2t, |Vbk |−2t}≤
(

1−5
2	

	1/3

)
min{|V ′ak

|, |V ′bk
|}

there exists a path Pak ,bk of length 2�k+1 that starts at vak , ends at vbk , and consists

only of edges in Gr[V ′ak
,V ′bk

]. In C̃, we replace each edge vak vbk by the path Pak ,bk .

This yields a red cycle of length �− t1+
∑t1−1

k=0 (2�k+1)=n.

Case 2. (Hr,Hg) is a coloring of type ECA(�1,�1). We will show that this implies

that (Gr \{u},Gg\{u}) is of type ECA(10
√

�1,10
√

�1). Let A, B, C, D be subsets of

V(H) satisfying conditions (a)–(c) of ECA(�1,�1). It is natural to consider the collection

{f (A), f (B), f (C), f (D)} of subsets of V(G) given by f (S)=⋃
j∈S Vj for S∈{A,B,C,D}.

Note that

|f (A)|≥|A| (1−	)(2n−2)

t
≥ (1−�1)

t′

4

(1−	)(2n−2)

t
≥ (1−2�1)

2n−2

4
.

Similarly, we obtain that |f (B)|, |f (C)|, |f (D)|≥ (1−2�1)(2n−2) /4. Therefore,

condition (a) of ECA(10
√

�1,10
√

�1) is satisfied with room to spare. Unfortunately,

{f (A), f (B), f (C), f (D)} might not satisfy conditions (b) and (c) of ECA(10
√

�1,10
√

�1).

But we shall prove that we can remove a few (bad) vertices from each f (S),

S∈{A,B,C,D}, so that the resulting sets continue to satisfy (a) and also satisfy

(b) and (c).

So, we count how many vertices do not have low degree in one of the bipartite

graphs Gg∗[f (A), f (D)], Gg∗ [f (B), f (C)], Gr∗ [f (A), f (B)] or Gr∗[f (C), f (D)]: we call a

vertex bad if its induced degree in any of those graphs is larger than 2
√

�1|V(G)\
{u}|=2

√
�1(2n−2). We claim that at most 2

√
�1(2n−2) vertices are bad.

Fix a vertex i∈V(H) and assume without loss of generality that i∈A. We bound

the number of red edges from Vi to f (D) as follows. Recalling that f (D)=⋃
j∈D Vj, it

is enough to bound er(Vi,Vj) for each j∈D. When ij /∈Hg∗ , we use the trivial bound

|Vi||Vj| for er(Vi,Vj), but notice that condition (b) of EC1(�1,�1) implies that there are

at most �1t′ such j′s. While for ij∈Hg∗ we can conclude that ij /∈Hr, thus, from the

definition of Hr, er(Vi,Vj)≤	1/3|Vi||Vj| / 4. Hence

er(Vi, f (D))≤ ∑
j∈D

ij�∈Hg∗

|Vi||Vj|+
∑
j∈D

ij∈Hg∗

	1/3

4
|Vi||Vj|

≤ �1t′|Vi||Vi|+|D|	
1/3

4
|Vi||Vi|

≤ �1t|Vi||Vi|+ 	1/3

4
t|Vi||Vi|

≤ 2�1|Vi|(2n−2),

where in the last equation we have used that |Vi|=|Vj| for any i, j≥1, t′|Vj|≤2n−2

and 	1/3 /4≤�1.
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Therefore, at most
√

�1|Vi| vertices of Vi can have more than 2
√

�1(2n−2) red neigh-

bors in f (D). Similarly, at most
√

�1|Vi| vertices of Vi can have more than 2
√

�1(2n−2)

green neighbors in f (B). Hence, at most 2
√

�1|Vi| vertices of Vi are bad. Now, if we

vary i over all vertices of V(H), we conclude that at most 2
√

�1|f (A)∪f (B)∪f (C)∪
f (D)|≤2

√
�1(2n−2) are bad.

Finally, we define Ã, B̃, C̃, D̃ as the sets obtained from f (A), f (B), f (C), f (D) by

removing the bad vertices. We have that

|Ã|≥|f (A)|−2
√

�1(2n−2)≥ (1−10
√

�1)(2n−2) /4.

The same holds for |B̃|, |C̃|, and |D̃|, that is, condition (a) of ECA(10
√

�1,10
√

�1) is

satisfied. Clearly, conditions (b) and (c) are satisfied by {Ã, B̃, C̃, D̃} as well. So, the

original two-coloring of G\{u} is of type ECA(10
√

�1,10
√

�1).

Since 10
√

�1<�14 and n>n14(10
√

�1,10
√

�1), we can use Lemma 14 to conclude

that there is a monochromatic Cn in G.

Case 3. (Hr,Hg) is a coloring of type ECB(�1,�1).

Again, we can show that this implies that (Gr \{u},Gg\{u}) is of type ECB(10
√

�1,

10
√

�1). The idea is exactly the same as in the previous case, hence we omit the technical

details here. And similarly as before, since 10
√

�1<�15 and n>n15(10
√

�1,10
√

�1),

we can use Lemma 15 to conclude that there is a monochromatic Cn in G. �

6. PROOF OF THEOREM 13

We will need the following two easy lemmas which are variants of lemmas found in

[12]. The first lemma is rather trivial but convenient.

Lemma 16. Assume that m<n is a positive integer, �(Gn)<m and H=Gn[A,B] is
a bipartite subgraph of Gn with 2m<|A|≤|B|. Then H is a connected subgraph of Gn
and contains a matching of size at least |A|−m.

Proof. Two vertices in A (resp. B) have a common neighbor in B (resp. A). Also

if a∈A, b∈B then any neighbor of a and b have a common neighbor in A. Thus H
is a connected subgraph. Moreover any maximum matching M misses fewer than m
vertices of A. �

Lemma 17. Assume that G is an r-partite graph with N vertices such that r≥2, and
�(G)<m. Suppose that the largest class in the partition of V(G) has at most as many
vertices as the sum of the orders of the others. Then G has a matching covering all
but at most rm vertices.

Proof. We do induction on the order of the graph G. If |G|≤rm, there is nothing

to do, since an empty matching suffices. Let V(G)=V1∪ . . .Vr, where |G|> rm, and

assume that |V1|≤· · ·≤|Vr| where |Vr|≤|V1∪· · ·∪Vr−1|. Clearly, |Vr|>m and there-

fore |V1∪· · ·∪Vr−1|>m. In particular Vr−1 �=∅. Then we can find an edge xy from

Vr−1 to Vr.

The hypothesis that the largest partite class is at most as large as the sum of the others

still holds on the graph G′ =G\{u,v}, though the relative order for the size of the sets
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V ′i=Vi\{u,v} might change. Now, G′ is r′-partite, with r′ ≤r and, by induction, we can

find a matching M′ that covers all but r′m≤rm vertices of G′. Finally, M=M′ ∪{xy}
is the matching we are looking for. �

Remark 18. With just a little more care, one can prove that there is a matching that

covers all but at most 2m vertices of G. But for this article, we will only use the lemma

with r=4 and omit unnecessary details.

Corollary 19. Let G be an r-partite graph with N vertices, r≥2. Assume that
V(G)=V1∪· · ·∪Vr and Vr is its largest class. Set k=max{|Vr|−

∑r−1
i=1 |Vi|,0}. Then,

if �(G)<m, then we can find a matching covering all but at most k+rm vertices.

Proof. Simply remove any k vertices from Vr and use the previous lemma in the

resulting graph. �

Now we can prove Theorem 13.

Proof of Theorem 13. Let �1 >0 be given. We define two extra parameters by

�0=�0=1 /20 that will eventually be used as input to Theorem 3 which, in turn,

outputs �3=�3(�0,�0), �3=�3(�0,�0), and �3=�3(�0,�0)<�0=1 /20. We also define

�13=min{�3 /5,�1 /10}
and

�13=min{�3 /4,10−4,�13 /10}.
Choose any � with 0<�<�13. We input 2� to Theorem 3 and get n3=

n3(2�,�3,�3,�0).

Finally, define

n13=max{n3, (2�)−1}.
Suppose we are given a four-partite graph G of order n, n>n13, and a partition V(G)=

V1∪V2∪V3∪V4 into independent sets that satisfies the conditions in the statement of

Theorem 13, i.e., |Vi|≥ (1 /4−�)n, 1≤ i≤4, and �(G)≤�n. Take any two-multicoloring

of its edges, say by red and green.

Now we consider the graph K obtained from G by adding all edges inside the sets

Vi. We color those new edges exclusively by blue and keep all other edges of K with

the same colors they have in G. Notice that now we have a three-multicoloring of an

almost complete graph on n vertices. In particular

�(K)≤�n

implies that K is a (1−2�)-dense graph. Since n≥n3 and 2�<�3, we can apply

Theorem 3 to K in order to either find a monochromatic matching of size at least

(1 /4+�3)n≥ (1 /4+5�13)n (edges), or conclude that the coloring of G is of EC1(�0,�0)-

type, EC2(�0,�0)-type, or EC3(�3,0.7,0.3, (2�)1/3)-type.

Note, however, that our coloring of K is not of any of these types. In fact,

first note that all color classes defined by these three types of colorings contain a

monochromatic bipartite subgraph where each set in the bipartition has order at least

(1−max{�0,0.7�3})n / 4>n / 5 which are (1−max{�0, (2�)1/3})-dense. In particular,
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those bipartite graphs are at least 19 /20-dense. However, the graph induced by the blue
edges in K does not have this property, being a union of four cliques of order close

to n / 4 with no edges connecting them. Therefore, there must exist a monochromatic

connected matching M of size at least (1 /4+5�13)n.

Since there exists no blue edge from Vi to Vj, where i �= j, every blue connected

component has order at most (1 /4+3�)n. As �<�13 and M is connected, M cannot

be blue. Therefore, M is a monochromatic connected matching in the original coloring

of G. Assume, without loss of generality, that M is red. From this point on, we will

return to work on the original multipartite graph G, i.e., we will ignore the blue edges.

Let C be the (maximal) connected component of Gr containing M. Recall that this

means that all edges of C are colored red but they are not necessarily exclusively red.

If C is non-bipartite, we are done. Therefore, we can assume C is bipartite.

Let V(C)=X∪Y be an arbitrary bipartition of C and let Z=V\C. From the definition of

C and the choice of X and Y , no edge inside X, inside Y or from Z to X∪Y is colored red.

Therefore, they are exclusively colored green. Note that e(M)≥ (1 /4+5�13)n implies

|Z|≤ ( 1
2
−10�13)n.

For 1≤ i≤4, denote Xi=Vi∩X, Yi=Vi∩Y , and Zi=Vi∩Z. Since |X|≥e(M)≥ (1 /

4+5�13)n and |Xi|≤|Vi|≤ (1 /4+3�)n≤ (1 /4+3�13)n, at least two of the sets X′i s have

order at least 2�13n>2�n. By Lemma 16, these two Xi’s induce a (green) connected

graph. Also, all other vertices in X and in Z have at least one neighbor in the union of

those two sets. Therefore, Gg[X∪Z] is connected. Similarly, Gg[Y∪Z] is connected.

So if Z �=∅, then Gg[X∪Y∪Z] is connected. In the next cases, we will prove that this

(green) component is odd and has a large matching, unless many of the sets Xi, Yi, Zi
are very small, in which case we will prove that the coloring has the desired structure.

Case 1. |Z|>�13n.

We claim that we can find a large enough odd connected green matching. Because

Z �=∅, we have that Gg[X∪Y∪Z] is connected. To verify that it is not bipartite, we

can easily check that it contains a triangle. In fact, we can assume that, without loss of

generality, |Z1|>�13n / 4, which implies |Z1|>2�n. Look at the orders of the sets Xi’s

and Yj’s. If there is any edge uv in Gg[X2,X3,X4], we can find a common neighbor of u
and v in Z1 and we are done. But we already know that at least one of X2,X3,X4, say X2,

is larger than 2�n. If either X3 or X4 is nonempty, we can find an edge in Gg[X2,X3∪X4]

and we are done. Then we can assume that X3 and X4 are empty. Similarly, either we

have a triangle or two of the sets Y2,Y3,Y4 are empty, which means that at least one

of Y3 or Y4 is empty. Call it Yi (i=3 or 4). Notice now that Zi=Vi and, in particular,

|Zi|≥2�n, so we can find a triangle in Gg[X1,X2,Zi].

Now, we only need to find a large matching in the green component. The basic idea

is to use Hall’s Theorem to find a matching M1 in G[Z,X∪Y] that covers all vertices

in Z and afterwards use Corollary 19 to prove that there are large matchings M2 in

V(X)\V(M1) and M3 in V(Y)\V(M1). But in order to use Corollary 19 effectively, we

want the difference between the largest part in V(X)\V(M1) and the sum of the others

to be small. So, the matching M1 needs to be chosen with some care.

We select a set L⊂X∪Y that shall be avoided by M1. Let L be a subset of X∪Y
of order 4�2�13n� containing �2�13n� vertices from each of two different Xi’s and two

different Yi’s, and otherwise arbitrary.
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We check that Hall’s condition works to find a matching M1, among the (green)

edges from Z to (X∪Y)\L, that covers all vertices of Z. In fact, a single vertex in Z,

without loss of generality in Z1, has degree at least |(X∪Y)\L|−|X1∪Y1|−�n>2(1 /

4+5�13)n−(8�13n)−(1 /4+3�)n−�n> (1 /4+�13)n. Then, for any S⊂Z, denoting

by N(S) the set of neighbors of S in (X∪Y)\L, we have: if |S|<(1 /4+�13)n, then

|N(S)|≥|S|; and if |S|≥ (1 /4+�13)n, then S intersects at least two of the sets Zi’s. Let

z′,z′′ ∈Z∩S such that z′ and z′′ belong to different sets Zi’s. In this case we have

|N(S)| ≥ |N({z′,z′′})|≥|(X∪Y)\L|−2�n

> 2(1 /4+5�13)n−(8�13n)−2�n> (1 /2+�13)n> |Z|≥|S|.
Therefore, there is a matching M1 that covers all vertices of Z. Denote X′ =X\V(M1),

X′i=Xi\V(M1) and assume, without loss of generality, that X′1 is the largest among X′1,

X′2, X′3 and X′4. Let

k=max{|X′1|−(|X′2|+|X′3|+|X′4|),0}.
Since |X′1|≤|V1|≤ (1 /4+3�)n and because at least one of the sets X′2, X′3, X′4 contains

�2�13n� vertices from L, we have k≤ (1 /4+3�−�2�13�)n. By Corollary 19, applied to

Gg[X′1,X′2,X′3,X′4] with m=�n and r=4, there is a matching M2 that covers all vertices

in X′ except for at most

k+4�n≤ (1 /4+7�−�2�13�)n.

The analogous statement holds replacing X′i by Y ′i .
The conclusion is that M1∪M2∪M3 leaves uncovered at most

2(1 /4+7�−�2�13�)n
vertices. Therefore

|V(M1)∪V(M2)∪V(M3)|≥|V(G)|−(1 /2−2�2�13�+14�)n≥ (1 /2+2�13)n

as desired.

Case 2. |Z|≤�13n.

We claim that if |X|> (1 /2+2�13)n, we can find a large monochromatic odd

connected (green) matching in Gg[X]. In fact, if |X|> (1 /2+2�13)n, then at least three

of the sets Xi’s are larger than �13n>2�n. Therefore, Gg[X] contains a triangle and,

in particular, is not bipartite. Also recall that Gg[X] is connected. Finally, we check

that Lemma 17 gives us a large matching inside X: since |Xi|<(1 /4+3�)n<|X| / 2, for

1≤ i≤4, no Xi can be larger than the sum of the others, so we apply the lemma and

conclude that there exists a matching of order at least |X|−4�n> (1 /2+�13)n, i.e.,

the orders of X and Y are close to each other.

Now, we can assume that |X|, |Y |≤ (1 /2+2�13)n. Since |Z|≤�13n, we have |X|, |Y |≥
(1 /2−3�13)n= (1−6�13)n / 2. If there is no green edge from X to Y , then we have an

ECB(6�13,�) which in particular is an ECB(�1,�1). Now, assume that there is a green
edge uv from X to Y . Since Gg[X] and Gg[Y] are connected, we conclude that Gg[X∪Y]

is connected. Using Corollary 19 twice, we can find large green matchings inside each

of X and Y . In fact, as |X|> (1 /2−3�13)n and max{|Xi| : 1≤ i≤4}≤ (1 /4+3�)n, the

difference between the largest |Xi| and the sum of the others is at most (3�13+6�)n. This
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implies that there is a matching in Gg[X] that misses at most ((3�13+6�)+4�)n vertices

of X. Similarly, there is a matching in Gg[Y] that misses at most (3�13+10�)n vertices

of Y . The union of those matchings is a (very) large green connected matching M: it

covers almost all vertices of G and we only need to cover (1 /2+2�13)n vertices.

If either X or Y has at least three nonempty parts, then we can find a triangle,

as in the beginning of the previous case, in which case M is an odd matching and

we are done. Otherwise, at least two of Xi’s and two of Yi’s are empty. We can

assume, without loss of generality, that the sets X3 and X4 are empty. This implies

that |X1|, |X2|≥ ((1 /4−�)−�13)n≥ (1−5�13)n / 4. Therefore, |Y1|, |Y2|≤5�13n and, as

|Y |≥ (1 /2+2�13)n and |Yi|≤n / 4 for all i, we have that |Y3| and |Y4| are non-empty.

It follows that Y1 and Y2 must be empty, which implies |Y3|, |Y4|≥ (1−5�13)n / 4.

We are getting closer to prove that the coloring of G must be an ECA(5�13,�). In fact,

we already know that there is no red edge in G[X1,X2] or G[Y3,Y4]. We can assume,

without loss of generality, that the green edge uv from X to Y is such that u∈X1 and

v∈Y3. If there is any green edge in G[X1,Y4] we can greedily construct an odd green
cycle, in which case M will be odd. Therefore we can assume that there is no green
edge in G[X1,Y4]. Similarly, we can assume that there is no green edge in G[X2,Y3].

Then, we conclude that our coloring is of type ECA(5�13,�) which in particular is an

ECA(�1,�1). �

7. PATHS AND CYCLES IN (BIPARTITE) GRAPHS AND PROOFS OF
LEMMAS 14 AND 15

The aim of this section is to prove Lemmas 14 and 15. To this end, we will need the

following fact which appears as Theorem 15 of Chapter 10 of Berge [3].

Lemma 20. Let G be a bipartite graph with the partition V(G)=A∪B where |A|=
|B|=n≥2. Assume that �(G)≥2 and that for each j, 2≤ j≤ (n+1)/2, in each of the
sets A, B, the number of vertices of degree at most j is smaller than j−1. Then G
is Hamilton-connected, i.e., each pair of vertices v, w with v∈A and w∈B can be
connected by a Hamiltonian path.

The next easy lemma, originally from [1] (in Portuguese), states that we can find

long paths in bipartite graph with large minimum degree. We give a proof here for

easy reference.

Lemma 21. Let H be a bipartite graph with bipartition X∪Y , |X|, |Y |≥4, and let
p and q be integers such that 0≤p< |X| / 3 and 0≤q<|Y | / 3. Assume that for every
x∈X, deg(x,Y)≥|Y |−q and for every y∈Y , deg(y,X)≥|X|−p. Then

(a) for every two vertices x,x′ ∈X, there exists an (x,x′)-path of length 2k−2 for every
2≤k≤min{|X|, |Y |−2q}; the analogous statement, obtained by exchanging the
two vertex classes, also holds;

(b) for every two vertices x∈X, y∈Y , there exists an (x,y)-path of length 2k−1 for
every odd 2≤k≤min{|X|−2p, |Y |−2q}.

Proof. The idea is just to build paths in a bipartite graph in a greedy fashion. In

order to prove (a), we first select k distinct vertices x1, . . . ,xk∈X (recall k≤|X|) such
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that x1=x, xk=x′. It is easy to build a path Pk=x1y1x2y2 . . .yk−1xk, with yi∈Y for all i,
1≤ i≤k−1. Assuming that for a given �, 1≤�≤k−1, we have built P�=x1y1 . . .y�−1x�,

let y� be any vertex in the common neighborhood of x� and x�+1 which is not in V(P�).

Then set P�+1=P�y�x�+1. Such a vertex exists as

|(N(x�−1)∩N(x�))\V(P�)|≥ (|Y |−2q)−(�−1)≥2>1

since

�≤k−1≤|Y |−2q−1.

The proof of (b) is similar: first take a neighbor x′ of y such that x′ �=x, and then

apply the previous construction to find a path of length 2k from x to x′, while making

sure such that this path also avoids y.

Lemma 22. Let r≥3 and let G be an r-partite graph of order n≥3, with parts Vi
such that |Vi|≤�n / 2�, 1≤ i≤r. Assume that each Vi is partitioned into Xi∪Wi such
that |⋃r

i=1 Wi|<n / (2r) and for every i �= j, the graphs, G[Xi,Xj] and G[Xi,Wj] are
complete. Then G has a Hamiltonian cycle.

Proof. In this proof, contrary to our standard notation, we write Pk for a path with

2k vertices. We also set Vk
i =Vi\V(Pk), Xk

i =Xi\V(Pk), Wk
i =Wi\V(Pk), Vk=⋃r

i=1 Vk
i ,

Wk=⋃r
i=1 Wk

i and nk=|Vk|=n−2k.

We say that a path Pk in G is good if it is such that

(a) |Vk
i |≤�nk / 2� for every 1≤ i≤r;

(b) and that either |Wk|≤1 or |Wk|<nk / r whenever k is odd and |Wk|<nk / (2r)

whenever k is even.

First, we prove by induction on k that, for k≤�(n−2) /2�, there exists a good path Pk.

For k=1, we let Pk=x1y1, where x1 is a vertex belonging to a largest class Vi and

y1 a vertex belonging to the second largest class. One can easily check that this is

a good path. Now, assume that Pk=xkxk−1 . . .x1y1 . . .yk−1yk is a good path for some

k≤�(n−2) /2�−1.

We claim that we can extend Pk to a good path Pk+1 by adding a new neighbor

to each endpoint of Pk. Let ik be such that |Vk
ik
| is maximum among |Vk

1 |, . . . , |Vk
r |.

Select two vertices u, v such that u∈Vk
ik

, v∈Vk\Vk
ik

, u is adjacent to one of xk, yk

and v is adjacent to the other. Notice that |Wk|<nk / r implies that Xk
ik
=Vk

ik
\Wk and

Xk\Xk
ik

are nonempty, therefore we have no trouble with the existence of u and v

(even if xk,yk∈Wk). But we require extra care while choosing v. In the case where

|Vk
ik
|= (nk−1) /2, two things can happen: either all other classes Vk

i have order strictly

less than (nk−1) /2 or there are only three nonempty classes, two of order (nk−1) /2

and one of order 1. In the latter case, we require v to be chosen from the large class

not containing u. We also assume that u and v are chosen from Wk whenever this is

possible. Finally, we let {xk+1,yk+1}={u,v} and Pk+1=yk+1yk . . .y1x1 . . .xkxk+1.

We claim that for the choice of u, v as above the path Pk+1 is good. The fact that

|Vk+1
i |≤�nk+1 /2� is straightforward. One also verify that for every i, with 1≤ i≤k,

either |Wi|≤1 or at least one among the vertices xi,yi,xi+1,yi+1 is chosen from W. In

fact, if both xi,yi are not in W, then xi+1 or yi+1 can be chosen from W except in the
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particular case where there are only three nonempty classes, two of order (ni−1) /2

and one of order 1 and in which the only vertex of W is that in the class of order 1.

If k+1 is even, then the facts that nk+1=nk−1−4, one xk,yk,xk+1,yk+1 is in W and

|Wk−1|≤nk−1 / (2r) imply that |Wk+1|≤nk−1 / (2r)−1≤nk+1 / (2r). If k+1 is odd, the

fact that |Wk|≤nk / (2r) implies that |Wk+1|≤nk+1 / r. Therefore, Pk+1 is good. Next,

to prove hamiltonicity, we treat the case whether n is even or n is odd separately.

First, we assume that n is odd. Let k= (n−3) /2. We conclude that there exists

a good path Pk=ykyk−1 . . .y1x1 . . .xk−1xk (of order 2k=n−3), such that Pk−1=
yk−1 . . .y1x1 . . .xk−1 is also good. Let Vk=V \V(Pk)={a,b,c}. The fact that Pk−1 is

good implies that at most one of xk,yk,a,b,c is in W. And the fact that Pk is good implies

that a, b and c belong to different partition classes. Therefore a, b, c are adjacent to

each other. Also, two of them, say a,b, are such that a is adjacent to xk and b is adjacent

to yk. Therefore, we have a Hamiltonian cycle Cn=cby(n−3)/2 . . .y1x1 . . .x(n−3)/2ac.

Finally, assume that n is even. Let k= (n−2) /2. As in the previous case, we consider

a good path denoted by Pk=ykyk−1 . . .y1x1 . . .xk−1xk (of order 2k=n−2), and so

that Pk−1 is also good and we let Vk=V \V(Pk)={a,b}. Using that Pk and Pk−1

are good we conclude that at most one among xk,yy,a,b is in W and that a and

b are in different partition classes. Therefore, we have a Hamiltonian cycle Cn=
by(n−2)/2 . . .y1x1 . . .x(n−2/2ab. �

We restate the Lemma 14 for easy reference.

Lemma 14. For n≥3 odd, let G=K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only
vertex of degree 2n−2 and let H=G\{u}. There exists �14 >0 such that, for all
�≤�14 and �≤�, there is a positive integer n14 with the following property: for every
odd n≥n14, every two-coloring of G, such that the induced coloring in H is of type
ECB(�,�), contains a monochromatic Cn.

Proof. We set

�14=10−4

and consider any �≤�14. Note that, for every �≤�, any coloring of type ECA(�,�) is

also of type ECA(�,�), hence, we may assume that �=�. Take

n14=��−4�.
Select n odd, with n≥n14. We let V(G)=U1∪U2∪U3∪U4∪{u}, where U1, U2, U3,

U4 are independent sets of order (n−1) /2 and u is the (only) vertex of degree 2n−2.

We also let H=G\{u}. Consider any two-coloring of G such that the coloring restricted

to H is of type ECA(�,�). We aim to find a monochromatic Cn in this coloring. Let A,

B, C, D be sets satisfying conditions (a), (b) and (c) of ECA(�,�) and notice that we

must have A⊂U1, B⊂U2, C⊂U3, D⊂U4 (without loss of generality on the ordering

of the sets Ui). Also, let Z=V(H)\(A∪B∪C∪D).

Now, consider the vertex u with full degree and look at the color of the edges from

u to A∪B∪C∪D.

Claim 23. If u has red neighbors in both A and B, we can find a monochromatic Cn.
Similarly, if u has red neighbors in both C and D or green neighbors in both B and C
or green neighbors in both A and D, we can find a monochromatic Cn.
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Proof. Suppose that there exists a∈A and b∈B such that ua and ub are red. We

show how to find a Cn in this case, and the other cases are analogous.

We show that if there exists a pair of vertex-disjoint red edges between A\{a}
and C, say a1c1 and a2c2, with ai∈A\{a} and ci∈C, i=1,2, one can find a red Cn.

In fact, we can find such a path by applying Lemma 21 a few times with p=q=�2n.

More precisely, there exists an (b,a1)-path P in Gr[A\{a},B] of length 3. Also, there

is a (c1,c2)-path Q in Gr[C,D] of any even length between 2 and 2(min{|C|, |D|−
2�(2n)})−2, and a (a2,a)-path R in Gr[A\V(P),B\V(P)] for any even length between

2 and 2min{|A\V(P)|, |B\V(P)|−2�(2n)}−2.

Then, for any even number k between 4 and

2(min{|A\V(P)|, |B\V(P)|−2�(2n)}+min{|C|, |D|−2�(2n)})−4 (5)

we can choose Q and R so that e(Q)+e(R)=k. Clearly, P∪Q∪R∪{au,ub,a1c1,a2c2}
is a copy of Ck+7. Notice from the above expression that we can take k=n−7 with

room to spare.

In fact, by condition (a) of ECA(�,�) we have

|A\V(P)|, |B\V(P)|, |C|, |D|≥ (1−�)(n−1)

2
−2.

Together with the bound (5), we have that k can be any even number between 4 and

2((1−�)(n−1)−8�n)−4=2n−18�n−6+2�, which is much bigger than n−7.

This means that we can assume there is no red edge in E(A\{a},C), with the exception

of at most one red star. This implies that all red edges in E(A,C) are contained in

at most two stars. By the same argument there are no red edges in E(B,D) with the

exception of at most two red stars. So, almost all edges in E(A∪B,C∪D) are green.

Now, again by Lemma 21 with p=q=�(2n), this time applied to Gg[A∪B,C∪D],

for any x,y∈A∪B, we can find a (x,y)-path of any given even length between 2 and

2(min{|A∪B|, |C∪D|}−2�(2n))−2. We remark that when x=a, we cannot apply the

lemma directly (as a might not satisfy the condition deg(a,C∪D)≥|C∪D|−�(2n)),

but we still can select one of its green neighbors in D, say d, and use the lemma to find

a long path from d to y. Again, the upper estimate on the order of our path is close to

2n and is clearly larger than n−1. Therefore, if there is any green edge xy with x∈A
and y∈B, we can find a green Cn.

Now, we can assume that all edges in G[A,B] are red. Similarly, we can assume that

all edges in G[C,D] are red. Once more, by applying Lemma 21 to Gg[A∪B,C∪D],

for any x∈A∪B and y∈C∪D, we can find a (x,y)-path of any odd length up to almost

2n and in particular we can find a (x,y)-path of length n−2. Therefore, if there is any

vertex in Z∪{u} which has green neighbors in both A∪B and C∪D we can find a green
Cn. Now, we can assume that this does not happen, which means that we can partition

the set Z∪{u} into sets S and T such that the vertices in S have only red neighbors

in A∪B and the vertices in T have only red neighbors in C∪D. Since we have 2n−1

vertices in total (in G), either A∪B∪S or C∪D∪T has at least n vertices. Without

loss of generality, we can assume |A∪B∪S|≥n. Let W be any subset of S such that

|A∪B∪W|=n.

Notice that now we can apply Lemma 22 to find a red Cn in G[A∪B∪W] as follows:

denote X1=A, X2=B, X3=X4=X5=∅, Wi=W∩Ui, for 1≤ i≤4 and W5=W∩{u}.
Clearly, |Xi∪Wi|⊂|Ui|≤�n / 2� and |W|≤|Z∪{u}|≤�(2n−2), so the conditions of the
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lemma are satisfied. Therefore, we can find a red Cn. This finishes the proof of the

claim. �

Now, select any a∈A. From the symmetry of the coloring, we can assume that ua
is red. Applying Claim 23 repetitively, either we find a Cn, or we can assume that all

edges from u to B are green, all edges from u to C are red, all from u to D are green
and all from u to A are red. Take b∈B, c∈C, d∈D (so now ua and uc are red while

ub and ud are green). Look at the edges from A to C.

Suppose there is a red edge xy∈E(A,C), with x �=a and y �=c. The same technique

from the proof of the claim works here, i.e., we can use Lemma 21 to find an even

length (a,x)-path P in Gr[A,B] and an even length (b,y)-path Q in Gr[C,D] so that

P∪Q∪{au,uc,xy} is a red Cn. We conclude that most edges in E(A,C) must be green.

But the technique works in this case as well: take any green edge rs, such that r∈A\{a}
and s∈C\{c}, and take an odd length (r,d)-path P in Gg[A,D] and an odd length

(s,b)-path Q in Gg[B,C] such that P∪Q∪{rs,bu,ud} is a green Cn.

This completes the proof. �

We restate Lemma 15 for easy reference.

Lemma 15. For n≥3 odd, let G=K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only
vertex of degree 2n−2 and let H=G\{u}. There exists �15 >0 such that, for all
�≤�15 and �≤�, there is a positive integer n15 with the following property: for every
odd n≥n15, every two-coloring of G, such that the induced coloring in H is of type
ECB(�,�), contains a monochromatic Cn.

Proof. As in the previous proof, we set

�15=10−4

and consider any �≤�15. Again, note that for every �≤�, any coloring of type ECB(�,�)

is also of type ECB(�,�), hence, we may assume that �=�. Take

n15=��−4�.

Let n be odd, with n≥n15. We let V(G)=U1∪U2∪U3∪U4∪{u}, where U1, U2, U3,

U4 are independent sets of order (n−1) /2 and u is the (only) vertex of degree 2n−2.

We also let H=G\{u}. Consider any two-coloring of G such that the coloring restricted

to H is of type ECB(�,�). We aim to find a monochromatic Cn in this coloring.

Let X∪Y∪Z be a partition of V(H) where X and Y satisfies either conditions (a)-(d)

of ECB(�,�). Let Xi=X∩Ui, Yi=Y∩Ui. In particular, |X|, |Y |≥ (1−�)(n−1) which

implies that |Z|≤�(2n−2).

We claim that if there is any red edge inside X we can find a red Cn. To see that,

assume that wx is such an edge. Let y be any red neighbor of x in Y . We claim that

we can construct a (w,y)-path P of length n−2 in Gr[X\{x},Y]. We choose subsets

X′ ⊂X and Y ′⊂Y such that:

(a) w∈X′, x /∈X′, y∈Y ′,
(b) |X′|= |Y ′|= (n−1) /2, and

(c) |X′i∪Y ′i |≤ (n−1) /4+�n, where X′i=X′∩Ui and Y ′i=Y ′∩Ui.
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This can be done because (1+�)(n−1)≥|X|, |Y |≥ (1−�)(n−1) and |Xi∪Yi|≤|Ui|=
(n−1) /2. In fact, for example, one can start taking half of the elements of each set

Xi and Yi (rounded to the closest integer), so that property (c) will be true with some

room to spare, and then add or subtract at most �n / 2 vertices to each X′ and Y ′, so

that properties (a) and (b) get satisfied.

Let us check that the conditions in Lemma 20 are satisfied for the graph Gr[X′,Y ′].
Let 2≤ j≤ (|Y ′|+1) /2 and write j= (|Y ′|+1) /2−k= (n+1) /4−k, for some 0≤k≤
(|Y ′|+1) /2−2. Let Rj={v∈X′ : deg(v,Y ′)≤ j}. We need to check that |Rj|<j−1. We

claim that for every 1≤ i≤4, either Rj∩X′i=∅ or |Rj∩X′i |≤3�n. Assume Rj∩X′i �=∅
and let v∈Rj∩X′i , for some 1≤ i≤4. Since v is adjacent to all but at most �(2n−2)

vertices in
⋃

t �=i Yt, we have that

∑
t �=i
|Y ′t |−�(2n−2)≤deg(v,Y ′)≤ j= |Y

′|+1

2
−k.

Therefore

|Y ′i |=|Y ′|−
(∑

t �=i
|Y ′t |

)
≥ |Y

′|−1

2
+k−�(2n−2)= n−3

4
+k−2�n.

This and condition (c) above implies that

|Rj∩X′i |≤|X′i |=|X′i∪Y ′i |−|Y ′i |≤3�n−(k−1)≤3�n.

We conclude that if Rj �=∅ then (k−1)≥3�n. Whereas (k−1)≤3�n, for every i such

that Rj∩X′i �=∅ we have |X′i |≤3�n−(k−1)≤3�n.

We conclude that |Rj|≤12�n. Since j−1>(n+1) /4−(k−1)−�n≥ (n+1) /4−4�n≥
12�n, we have |Rj|<j−1 as claimed. Therefore, we can use Lemma 20 to find a (red)

Hamiltonian path in Gg[X′,Y ′] starting on w and ending in y. Appending the edges wx
and xy to this path we get a red Cn.

We can assume now that G[X] has all its edges colored in green, i.e., it is a complete

green multipartite graph. And similarly we conclude that all edges in G[Y] are also

green. Also, if there is any vertex z in Z such z has a red neighbors x, y with x∈X
and y∈Y , we can use the same argument from above to find a (x,y)-path P in Gr[X,Y]

such that P∪{xz,zy} is a (red) Cn. Finally, if this does not happen, the set Z∪{u} can

be partitioned into S∪T such that all edges from S to X and all edges from T to Y are

green. Since the total number of vertices in G is 2n−1, we have that either |X∪S|≥n
or |Y∪T |≥n. Assume, without loss of generality, that the first holds. Letting W be

any subset of S such that |X∪W|=n, one can apply Lemma 22 to find a green Cn
in G[X∪W]. In fact, the conditions of the lemma are satisfied by the sets Vi=Xi∪Wi
where Wi=W∩Ui, for 1≤ i≤4, W5=W∩{u} and X5=∅. �

8. FINAL REMARKS

In a recent article, Li et al. [15] conjectured that a generalization of Theorem 2 holds.

Conjecture 24. Let N≥4 and let G be a graph of order N with �(G)>3N / 4. For any
2-coloring of the edges of G and any k, 4≤k≤�N / 2�, G contains a monochromatic Ck.
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In [15], it is proved that, for any 	>0 and n large, the same assumptions imply that

we can find a monochromatic Ck for every k between 4 and �(1 /8−	)N�.
In Theorem 2, letting N=2n−1, we have that all vertices, except one, that we called

u, have degree �3N / 4�. One can adapt our proof to the case where u does not have

full degree, but has only degree �3N / 4�. In fact, in order to do that, one only need to

change the proofs of Lemmas 14 and 15. Though we have only searched for a C�N/2�,
this provides a tight example in which the above conjecture is probably true. We hope

to attack the general problem as well as similar problems about even cycles and paths

in forthcoming articles.
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