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Abstract

In the geodetic convexity of a graph G, we define the interval of a set S ⊆ V (G) as
the set formed by S and all vertices in all shortest paths with endpoints in S. We
say S is convex if it is equal to its interval. The convex hull of S can be obtained
by repeatedly applying the interval function until obtaining a convex set. Here
we consider the problem of determining the maximum k such that there is a set of
vertices S, whose convex hull is V (G), such that it is necessary at least k applications
of the interval function to obtain V (G). We show that this problem is NP-complete
for bipartite graphs and give a polynomial time algorithm for distance-hereditary
graphs.
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1 Introduction

A family C of subsets of a finite set V is a convexity on V if ∅, V ∈ C and C is
closed under intersections. A set S of C is called a C-convex set. When V is
the vertex set of a (simple and undirected) graph G, it is standard to define
C using a family P of paths of G in such a way that a set S ⊆ V (G) is a
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C-convex set if and only if for every path P in P whose extremities belong to
S, all vertices of P also belong to S. In that case we have a graph convexity.

The most studied graph convexities are the geodetic convexity [10,11], the
monophonic convexity [7,9] and the P3 convexity [1], where P is, respectively,
the family of all shortest paths, of all induced paths, and of all paths of order
three of the graph. A rich source on general convexities is [13].

The C-convex hull of S is the smallest C-convex set HC(S) containing S.
We say that S is a C-hull set of G if HC(S) = V (G). The C-interval of S,
IC(S), consists of S and all vertices lying in some path of P that has endpoints
in S. Observe that, since P is finite, the C-convex hull of S can be obtained
by iteratively applying the C-interval function until obtaining a C-convex set.

We may also see the above process as an infection that starts at the set
S and spreads to other vertices through the paths (of P) that connect two
infected vertices. Here, we are interested in the maximum amount of time
needed to infect all vertices starting with a C-hull set. More precisely, let
I0C(S) = S and IkC (S) = IC(I

k−1
C (S)) for k ≥ 1. We say that a hull set S takes

time k to infect G if IkC (S) = V (G) but Ik−1C (S) 6= V (G) (when S = V (G) we
say it takes time 0 to infect G). The infection time of G relative to C, called
tC(G), is the maximum k such that there is a C-hull set S which takes time k
to infect G. We considered the decision version of this problem.

MAX Infection time on convexity C
Input: A graph G and an integer k.
Question: Is tC(G) ≥ k?

There is vast literature about “infection problems”, also studied under the
names “dissemination”, “diffusion” or “conversion”. However, the way such
infections spread varies considerably. For example, another common model
is r-neighbour bootstrap percolation in which a vertex becomes infected if it
has at least r infected neighbours, a model introduced by Chalupa, Leath and
Reich [5] that found many applications in physics and computer science [8].

The question about the maximum infection time was originally posed by
Bollobás for the 2-neighbour bootstrap percolation in the square grid, and
solved by Benevides and Przykucki [4]. Note that the 2-neighbour bootstrap
percolation model coincides with the infection problem for the P3 convexity.
The MAX Infection time on the P3 convexity was considered in [3] where it
was shown that it is NP-complete for general graphs and any fixed k ≥ 4,
and for bipartite graphs and any fixed k ≥ 7. It was also given polynomial
algorithms for planar graphs, trees, and chordal graphs.

In this work we consider the MAX Infection Time problem on the geodetic



convexity. This problem is, therefore, at the intersection of two large branches:
“convexity problems” and “infection problems”. In Section 2, we prove that
the Infection time on geodetic convexity is NP-complete even if the input
graph is bipartite and k ≥ 2 is fixed. In Section 3, we give a polynomial time
algorithm for computing the infection time of a distance-hereditary graph.

We will use the following notation. For any positive integer n, we define
[n] = {k : k is integer and 1 ≤ k ≤ n}. For two vertices u, v in a graph, the
distance from u to v, d(u, v), is given by the number of edges in a shortest
path between u and v. When there is no ambiguity about the convexity that
we are using, we drop the symbol (C) of the convexity.

2 Bipartite graphs

In this section we give a sketch of the proof of the following theorem.

Theorem 2.1 MAX Infection time on geodetic convexity, for fixed k ≥ 2,
is NP-complete even if the input graph is known to be bipartite.

Proof [Sketch] We do a reduction from 3SAT. Consider a boolean formula
F with m clauses on a set with n variables. We construct a bipartite graph
G in the following way. For each clause Ci of F we build the clause gadget
depicted in Figure 1 which, for every l ∈ [3], has vertices ui, ti, vi,l, wi,l, xi,l,
yi,l along with the edges uiti, uivi,l, tiwi,l, vi,lwi,l, wi,lxi,l, xi,lyi,l.

We construct a graph G as follows. Add each clause gadget to G and
further add vertices q, r and s along with the edges rxi,l, sti for every i ∈ [m]
and l ∈ [3]. Finally, for every pair of literals `i,a ∈ Ci and `j,b ∈ Cj, for
i 6= j and a, b ∈ [3], such that `i,a and `j,b are not the negation of each
other, add vertices oi,a,j,b, pi,a,j,b along with the edges oi,a,j,bpi,a,j,b, oi,a,j,bq,
oi,a,j,bwi,a, oi,a,j,bwj,b, completing the construction of G. See Figure 2 for a
partial construction of the graph G and note that the gray and white vertices
define a bipartition.

We denote W = {wi,l : for i ∈ [m] and l ∈ [3]}, T = {ti : for i ∈ [m]}
and similarly O = {oi,a,j,b}, for all values of i, a, j, b for which oi,a,j,b is defined.
Define X, Y , V , U and P in a analogous way. Finally for every i ∈ [m], let
Di = {ui, vi,1, vi,2, vi,3}.

For k = 2, the proof of Theorem 2.1 follows from the fact that there exists
a truth assignment to the variables {x1, . . . , xn} satisfying all clauses of F if
and only if the infection time of G is at least 2.

Now suppose that k > 2. We construct a graph HN , such that |V (HN)| =
N +3 and t(HN) = N as follows: start with a 4-cycle H1 = v1v2v3v4 and build
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Figure 1. Clause gadget.
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Figure 2. Partial construction of G for F = {C1, C2, C3} where C1 = {x1, x2, x4},
C2 = {x2, x3, x4}, C3 = {x1, x2, x4}.

HN from HN−1 by adding a vertex vN adjacent to vN−1 and vN−3. (Figure 2).

To finish the proof, it suffices to add to the construction of G a vertex s′

twin to s and a copy of the graph Hk−2, such that s′ and s are identified to
the vertices v1 and v3 of the copy of Hk−2, respectively. This new graph G has
infection time k if and only if F is satisfiable. 2

3 Distance-hereditary graphs

Now, we give the main idea on how to compute t(G) (in the geodetic convexity)
in polynomial time for a distance-hereditary graph G. A connected graph G
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Figure 3. The Graph H9. A value inside the vertex is the time which the vertex
becomes infected starting from the hull set v1, v3.

is distance-hereditary if every pair of vertices has the same distance in every
connected induced subgraph of G (which contains both). This graph class
admits a characterization by induced forbidden subgraphs and polynomial
time algorithm of recognition [2]. Notice that the graphs HN , defined at the
end of the proof of Theorem 2.1 (Figure 2) are distance-hereditary. So, there
are distance-hereditary graphs with large infection time (compared to |V (G)|).

Observe that geodetic and monophonic convexities coincide for distance-
hereditary graphs, since for this class of graphs every shortest path is an
induced path and vice-versa. Dourado, Protti, Szwarcfiter [7] have recently
proved that, although even computing the interval function of a given set in
the monophonic convexity is an NP-hard problem, it is possible to compute
the size of the smallest (monophonic)-hull set of an arbitrary graph using
the so called minimal clique decomposition tree. Our algorithm will start by
constructing a minimal clique decomposition tree T of G, which can be done
in O(n3m) steps [7].

We remark that in order to compute t(G), (surprisingly) it is not enough
to look only at the minimum hull sets [4]. But it clearly suffices to look only
to the minimal ones, as every hull set contains a minimal hull set.

We can prove that it is possible to characterize, for general graphs in the
monophonic convexity, all minimal hull sets. This is a direct consequence of
some results in [7], by looking to the atoms of G (i.e., certain subgraphs which
have no clique separator). For this we use a classification of the leaves of a
minimal clique decomposition tree T of G (see [7]). Then, we can proceed
with a finer analysis which further restricts our search space to a polynomial
number of sets in a way that it is possible to determine t(G) by computing the
infection time of only such sets. The later can be done applying the interval
function (which takes polynomial time for the geodetic convexity [6]).
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