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Abstract. We consider a classic model known as bootstrap percolation on the n×n square grid.
To each vertex of the grid we assign an initial state, infected or healthy, and then in consecutive
rounds we infect every healthy vertex that has at least 2 already infected neighbours. We say that
percolation occurs if the whole grid is eventually infected. In this paper, contributing to a recent
series of extremal results in this field, we prove that the maximum time a bootstrap percolation
process can take to eventually infect the entire vertex set of the grid is 13n2/18 +O(n).
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1. Introduction. In this paper we consider a particular extremal problem in
2-neighbour bootstrap percolation on the n × n square grid. Our aim is to find the
maximum time it may take to infect the whole grid, as precisely defined below.

Given a graph G and a natural number r, consider the following process known as
r-neighbour bootstrap percolation on G. Choose a subset A ⊂ V (G) of vertices (that
in the context of percolation are usually called sites) and infect all of its elements,
leaving the remaining vertices healthy. Then, in consecutive rounds, infect every
healthy site that has at least r already infected neighbours. More formally, set A0 = A
and, for t ∈ N, thinking of At as the set of sites that have been infected by time t and
denoting by N(v) the set of neighbours of v, let

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩At−1| ≥ r}. (1.1)

The set of all sites that eventually become infected is called the closure of A and is
denoted by 〈A〉. It is clear from the definition that 〈A〉 =

⋃∞
t=0At. We say that a set

A percolates if all sites are eventually infected, that is, if 〈A〉 = V (G). The choice of
the set A may be either random or deterministic, giving rise to questions of different
nature.

Bootstrap percolation was introduced in 1979 by Chalupa, Leath and Reich [14]
and has found applications in many areas including physics, computer science and
sociology. One of the first questions that attracted a lot of attention was related to
the critical probability defined as

pc(G, r) = inf{p : Pp(A percolates in G in r-neighbour bootstrap process) ≥ 1/2},

where the elements of the set A are chosen independently at random with probabil-
ity p. In the most classical and celebrated variant the graph G is the n×n square grid,
denoted by [n]2 (i.e., the set of sites is V (G) = {(i, j) : 1 ≤ i, j ≤ n} and two sites
are adjacent if they are at l1 distance 1) and r = 2. Working in this setup Aizenman
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and Lebowitz [1] showed that pc([n]2, 2) = Θ
(

1
logn

)
. Using much more sophisticated

techniques Holroyd [17] showed that pc([n]2, 2) = π2

18 logn + o
(

1
logn

)
, and Gravner,

Holroyd and Morris [16] obtained bounds on the second order term. Cerf and Cir-
illo [12] and Cerf and Manzo [13] determined the critical probability for r-neighbour
bootstrap percolation on [n]d up to a constant factor, while recently Balogh, Bollobás,
Duminil-Copin and Morris [3] obtained the asymptotic value of pc([n]d, r) for all fixed
values of d and r. More general models of bootstrap percolation were studied by
Gravner and Griffeath [15], Bollobás, Smith and Uzzell [10] and Balister, Bollobás,
Przykucki and Smith [2].

Now, when the set A is chosen deterministically, various interesting extremal
questions arise. The first observation one can make is now a folklore one: in the classic
model, with G = [n]2 and r = 2, the smallest percolating sets have size exactly n. The
size of the smallest percolating sets in other graphs and for other values of the infection
threshold was studied by Pete [6] and by Balogh, Bollobás, Morris and Riordan [5].
Answering a question posed by Bollobás, Morris [18] gave bounds on the maximum
size of a minimal percolating set for G = [n]2 and r = 2. A similar problem for 2-
neighbour bootstrap percolation on a hypercube was fully answered by Riedl [20] who
also studied minimal percolating sets in finite trees [21]. In this paper we continue
this recent trend and consider another extremal problem posed by Bollobás. We give
an asymptotic value of the maximum time that any percolating subset of the set of
vertices of G = [n]2 can take to percolate under 2-neighbour bootstrap percolation.
The main result of this article is the following theorem.

Theorem 1. The maximum time of percolation on the n × n square grid is
13
18n

2 +O(n).
An analogous question for a hypercube was recently answered by Przykucki [19].

In [8], Benevides and Przykucki showed that, again for G = [n]2 and r = 2, when
we restrict our attention to percolating sets of size n then the maximum percolation
time is equal to the integer nearest to 5n2−2n

8 . Together with Theorem 1 this implies
that, somewhat surprisingly, the slowest percolating sets do not have the minimum
possible number of sites.

Benevides, Campos, Dourado, Sampaio and Silva [7] considered the computa-
tional complexity of the question of finding maximum percolation time on general
graphs. They proved that its associated decision problem is NP-complete. Questions
related to percolation time have also been considered recently in the probabilistic setup
by Bollobás, Holmgren, Smith and Uzzell [9] and by Bollobás, Smith and Uzzell [11].

The structure of this paper is as follows. In Section 2 we introduce the basic
notation and defineM(k, `), the function representing the maximum percolation time
on the k × ` grid. In Section 3 we define a particular family of percolating sets,
prove the asymptotic formula for M(k, `) and show that our family contains sets that
percolate in time M(k, `). In Section 4 we prove Theorem 1 and finally in Section 5
we show some results that follow from our work and state some open questions and
conjectures.

1.1. Relationship to earlier work. We acknowledge that some of the tech-
niques used in [8] are also applied here. However, the condition that |A| = n that
was assumed in [8] makes the question much easier to answer and greatly simplifies
the proof. In the case of arbitrary percolating sets our simulations suggest that the
maximum percolation time in [n]2 is obtained for sets of size 23n/18 +O(1), implying
that these two questions are significantly different.
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Let us briefly outline here the additional complications that arise when we consider
the problem for arbitrary percolating sets. A reader not familiar with our previous
article [8] may skip the remainder of this section. Throughout this paper we shall also
explicitly point out the new key ideas in our proofs.

First, the condition |A| = n imposes very strong limitations on the rectangles
R′ and R′′ when we apply Proposition 3. The lack of these limitations makes the
definition of (k, `)-perfect sets in Section 3 much wider than the definition of (k, `)-
good sets in [8]. Consequently, in the proof of the lower bound onM(k, `) in Theorem 5
we need to take into the account four constructions of percolating sets that could
not occur when |A| = n. More importantly, in the proof of the upper bound in
Theorem 5 we need to consider three additional situations, namely Condition D, E
and most crucially F, that could occur when we apply Proposition 3. The analysis of
Condition F is by far the most important ingredient of the proof of Theorem 5.

The first part of the proof of Theorem 1, which we give in Section 4, is a significant
extension of the methods used in [8]. However, the most important element of the
proof is the application of the fractional moves that are a new idea introduced in this
paper. We explain the precise reasons behind the need to study this new concept in
Section 4.

2. Notation and preliminary observations. We write Rec(k, `) to denote
the set of all k by ` rectangles in Z2, i.e., of all subsets of the integer lattice of the
form {a, a + 1, . . . , a + k − 1} × {b, b + 1, . . . , b + ` − 1} for some a, b ∈ Z. When we
represent subsets of Z2 graphically we depict (i, j) ∈ Z2 as a unit square centred at
(i, j). We usually use shaded squares to mark infected sites.

The perimeter of a set A ⊂ Z2 is the number of edges between A and Z2 \ A
in the integer lattice graph. In our applications it will be more convenient to talk
about Φ(A), the semi-perimeter of A, which is simply half of its perimeter. Thus, for
R ∈ Rec(k, `) we have Φ(R) = k + `.

When we talk about a distance between two sites in Z2 we always mean the usual
graph distance, i.e., the length of the shortest path between two vertices, that for sites
(i1, j1), (i2, j2) ∈ Z2 is equal to |i1 − i2| + |j1 − j2|. For two subsets A,B of Z2 the
distance between them, dist(A,B), is the minimum distance between a site in A and
a site in B. Clearly, dist(A,B) = 0 if and only if A ∩ B 6= ∅ and dist(A,B) = 1 if
their intersection is empty but there is a site in A that is adjacent to a site in B. In
our pictures two such sites correspond to unit squares that share an edge.

Now let us turn to 2-neighbour bootstrap percolation on the integer lattice. A
rectangle R is said to be internally spanned by a set A of infected sites if 〈A ∩R〉 = R.
Let us observe that for any set A of initially infected sites we have Φ(〈A〉) ≤ Φ(A).
This is because whenever a new site becomes infected at least two edges are removed
from the boundary of the infected set and at most two new edges are added to it.
Also, every edge can transmit infection only once from a uniquely determined infected
site to a uniquely determined healthy site. Thus the perimeter of the infected area
cannot grow during the process. From this observation we have the following fact.

Fact 2. Given R ∈ Rec(k, `), if A ⊂ R internally spans R then |A| ≥ dΦ(R)/2e =⌈
k+`
2

⌉
. In particular, if n ∈ N and A ⊂ [n]2 percolates, then |A| ≥ n.

Another simple observation is that, for any set A of infected sites, 〈A〉 is a union
of rectangles such that any distinct two of them are at distance at least 3. This
can be observed immediately as A is, indeed, a union of 1 × 1 rectangles and any
two rectangles at distance at most 2 internally span the minimal rectangle containing
them both.
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The next proposition from Holroyd [17], giving us a deeper insight into the nature
of percolating sets, shall be extremely useful in our further considerations.

Proposition 3. Let R be a rectangle with area at least 2 internally spanned by
a set A. Then there exist disjoint subsets A′, A′′ ( A, and subrectangles R′, R′′ ( R
such that:

1. 〈A′〉 = R′ and 〈A′′〉 = R′′, and
2. 〈R′ ∪R′′〉 = R; in particular, dist(R′, R′′) ≤ 2.
In Proposition 3 we cannot require R′∩R′′ = ∅ (see Figure 2.1). Also, the choices

of A′ and A′′ (and hence also of R′ and R′′) are not necessarily unique. Furthermore,
we note that given a set A some sites in R \ (R′ ∪ R′′) may become infected in the
process while some of R′∪R′′ are still healthy. Finally, the disjointness of A′ and A′′ is
often a crucial ingredient when we try to answer probabilistic questions in bootstrap
percolation. However, it will not be important for our purposes.

R′

R′′

Fig. 2.1. An example where the overlapping rectangles R′ and R′′ are uniquely determined by
the initially infected sites.

Now let us define the notion of maximum percolation time precisely. For a graph
G and a set A of initially infected sites we say that A takes time T to percolate
(or “percolates in time T ”) if 〈A〉 = V (G) and T is the smallest number such that
AT = V (G), where At is defined as in (1.1). We shall also be interested in the infection
time of particular sites v ∈ V (G). Therefore let IA(v) be the minimum T such that
v ∈ AT starting from A0 = A. If starting from A the site v never becomes infected,
i.e., if v /∈ 〈A〉, then we set IA(v) =∞. Finally, we define

M(n) = max{T ∈ N : there exists a set A percolating in time T in [n]2}.

In this paper we determine the asymptotic formula for M(n) up to an O(n) additive
error. We believe that a constant additive error or maybe even an exact formula could
be found with similar techniques but with a much longer and tedious proof. We show
that to infect [n]2 in the maximum possible time one should first infect some smaller
rectangular grid, not necessarily a square one, in the maximum time. This motivates
a definition of the maximum percolation time in rectangles. For any k, ` ∈ N let

M(k, `) = max{T ∈ N : there exists a set A percolating in time T in [k]× [`]}.

Note that clearly M(k, `) = M(`, k). For a rectangle R ∈ Rec(k, `), to simplify our
notation, we shall often write M(R) instead of M(k, `).



Maximum percolation time in bootstrap percolation 5

3. Slowly percolating sets. In this section we prove the recursive formula for
M(k, `) in order to later prove the asymptotic formula forM(n). Let us start by giving
a trivial upper bound and a natural lower bound on M(n). Since every percolating
set in [n]2 contains at least n sites and for the infection to continue at every step we
need to infect at least one new site, we have M(n) ≤ n2 − n. On the other hand, the
example shown in Figure 3.1 for the [7]2 grid, generalizing in a self–explanatory way
to [n]2, shows that there exist initially infected sets of size linear in n for which at
approximately half of the number of steps only one site becomes infected while the
other steps, with the exception of the first one, yield infection of only two new sites.
This clearly implies that M(n) ≥ 2n2

3 + O(n). We will prove that for every n there
is a set which percolates [n]2 in time M(n), for which at every time step at most two
new sites become infected, but the number of steps for which a single site becomes
infected is significantly larger than in the example in Figure 3.1.

1 1 1

Fig. 3.1. An initial set giving a lower bound M(n) ≥ 2n2

3
+O(n).

The outline of our proof is as follows. First we define a notion of a (k, `)-perfect
set of initially infected sites. Next, we prove that the function M(k, `) satisfies a
certain recursive relation. Simultaneously we show that (k, `)-perfect sets exist and
that their percolation time satisfies the same relation as does the function M(k, `).
Although we do not find an exact solution to the recursion, we are able to find good
lower and upper bounds on M(n). For the lower bound we construct an explicit set
of initially infected sites that is “almost” (n, n)-perfect. Finally, for the upper bound,
we define a relaxed version of the infection process and for any (n, n)-perfect set A
we build an appropriate instance of this new process; from this new instance we get
an upper bound for the time that A takes to percolate. Most of the important ideas
necessary to obtain an upper bound on M(n) are new and have not appeared in the
previous works related to maximum percolation time.

The overall structure of this paper is similar to the one of [8] where we defined
the notion of (k, `)-good sets. However, even though it might not seem immediately
obvious, the notion of a (k, `)-perfect set is not only a technical improvement over the
(k, `)-good sets. The freedom arising from the ability to choose an arbitrary number
of initially infected sites greatly increases the variety of percolating sets, forcing us
to “beat” all of them when it comes to percolation time using sets that we have good
control over. These shall be precisely our (k, `)-perfect sets.

Let us start introducing the (k, `)-perfect sets now. The idea is to look at sets of
initially infected sites, say A, for which the infection process started from A can be
described by a nested sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr, such that for every
0 ≤ i ≤ r the set A∩Pi internally spans Pi in maximum time. We shall only consider
sequences such that P0 is small and Φ(Pi−1)+2 ≤ Φ(Pi) ≤ Φ(Pi−1)+3. That gives us
seven possible values of the lengths of the sides of Pi given those of Pi−1 (see Figures
3.2 and 3.3). We should note that it is far from obvious that such a set A exists. We
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prove this in Theorem 5 by induction. In order to make this induction easier we add
a few other technical conditions to the definition of a (k, `)-perfect set. Now let us
define this notion precisely.

Definition 4. Given k, ` ∈ N we say that a set A is (k, `)-perfect if the infection
process starting from A can be described in the following way. There exists a nested
sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `) with Pi ∈ Rec(si, ti) for every
0 ≤ i ≤ r, satisfying the following properties:

a. either s0 ≤ 2 or t0 ≤ 2 or s0 = t0 = 3; and s1, t1 ≥ 3 with (s1, t1) 6= (3, 3),
b. for each 1 ≤ i ≤ r,

Pi ∈ Rec(si−1 + 1, ti−1 + 1) ∪ Rec(si−1 + 2, ti−1) ∪ Rec(si−1, ti−1 + 2)

∪ Rec(si−1 + 2, ti−1 + 1) ∪ Rec(si−1 + 1, ti−1 + 2)

∪ Rec(si−1, ti−1 + 3) ∪ Rec(si−1 + 3, ti−1),

c. for every 0 ≤ i ≤ r, the rectangle Pi is internally spanned by A ∩ Pi in the
maximum possible time, that is, in time M(Pi),

d. for every 0 ≤ i ≤ r, if Pi has no side of length 1 then among the sites becoming
infected last in Pi there is at least one of its corner sites,

e. for every 1 ≤ i ≤ r, if

Pi ∈ Rec(si−1 + 1, ti−1 + 1) ∪ Rec(si−1, ti−1 + 2) ∪ Rec(si−1 + 2, ti−1)

then there exists a site vi−1 ∈ A such that Pi−1 ∪ {vi−1} internally spans Pi
and vi−1 is at distance exactly 2 from one of the corner sites in Pi−1 (one
which becomes infected last in Pi−1, if there is such) and at distance at least
3 from any other site in Pi−1 (see Figure 3.2),

f. for every 1 ≤ i ≤ r, if

Pi ∈ Rec(si−1 + 2, ti−1 + 1) ∪ Rec(si−1 + 1, ti−1 + 2)

∪ Rec(si−1, ti−1 + 3) ∪ Rec(si−1 + 3, ti−1)

then there exists a pair of sites vi−1, wi−1 ∈ A such that Pi−1 ∪ {vi−1, wi−1}
internally spans Pi and vi−1 is at distance exactly 2 from one of the corner
sites in Pi−1 (one which becomes infected last in Pi−1, if there is such) and at
distance at least 3 from any other site in Pi−1, while wi−1 is at distance exactly
1 from one of the last corner sites to become infected in 〈Pi−1 ∪ {vi−1}〉 and
at distance at least 2 from any other site in 〈Pi−1 ∪ {vi−1}〉 (see Figure 3.3).

From condition (c), taking i = r, it follows that any (k, `)-perfect set infects a
rectangle in Rec(k, `) in time M(k, `). In particular, any (n, n)-perfect set maximizes
percolation time in [n]2.

Given a (k, `)-perfect set and a sequence P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `) associ-
ated with it, for 1 ≤ i ≤ r and 1 ≤ m ≤ 7, we say that we use Move m at moment i
(to construct Pi from Pi−1) if Pi belongs to the m-th term of the following list:

1. Rec(si−1 + 1, ti−1 + 1),
2. Rec(si−1 + 2, ti−1),
3. Rec(si−1, ti−1 + 2),
4. Rec(si−1 + 2, ti−1 + 1),
5. Rec(si−1 + 1, ti−1 + 2),
6. Rec(si−1, ti−1 + 3),
7. Rec(si−1 + 3, ti−1).
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ti−1

si−1

Move 1 at moment i

ti−1

si−1

1
2

Move 2 at moment i

Fig. 3.2. Move 1 and 2 (Move 3 is obtained by rotating the picture of Move 2 by 90 degrees).

1 2

ti−1

si−1

Move 5 at moment i

ti−1

si−1

1
2

Move 7 at moment i

Fig. 3.3. Move 5 and 7 (Move 4 and 6 are obtained by rotating the above figures by 90 degrees).

In the next lemma we determine the value of M(k, 2) and give an example of a
(k, 2)-perfect set for each natural k.

Lemma 3.1. For any natural number k we have M(k, 2) =
⌊
3(k−1)

2

⌋
. Further-

more, there is a (k, 2)-perfect set A0(k, 2) that percolates [k]× [2] in time M(k, 2).
Proof. First let us consider the case when k is even. Let A0(k, 2) to be the set

of shaded sites in Figure 3.4. Clearly A0(k, 2) percolates [k]× [2] in time
⌊
3(k−1)

2

⌋
=

(3k − 4)/2. Thus we have M(k, 2) ≥
⌊
3(k−1)

2

⌋
for any k even.

1
1

. . .
. . . . . .

k

Fig. 3.4. A (k, 2)-perfect set achieving maximum percolation time on [k]× [2] for k even.

Now we prove by induction on k that for any k even we haveM(k, 2) ≤ (3k−4)/2.
Clearly, M(2, 2) = 1. Assume that k ≥ 4 is even and that M(k− 2, 2) = (3k− 10)/2.
Let A be any set that percolates [k] × [2]. Since percolation time is at most the
number of initially healthy sites, if |A| ≥ k/2 + 2 then it percolates in time at most
2k−(k/2+2) = (3k−4)/2. On the other hand, by Fact 2, we must have |A| ≥ k/2+1.
Therefore we may assume that the cardinality of A is exactly k/2 + 1.

Since A percolates, for all 1 ≤ i ≤ k/2, any 2× 2 square of the form {2i− 1, 2i}×
{1, 2} contains at least one site of A. Hence only one of these squares contains two sites
of A. Therefore, either {1, 2} × {1, 2} or {k− 1, k} × {1, 2} contains exactly one such
site. Assume without loss of generality that the latter holds. As A percolates, either
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(k, 1) or (k, 2) must be an initially infected site. Again without loss of generality we
may assume that the latter holds. In this setting it is trivial to check that A\{(k, 2)}
internally spans [k−2]×[2]. Therefore A takes time at mostM(k−2, 2)+3 = (3k−4)/2
to percolate. It is also trivial to check that the sequence consisting of only one
rectangle, say P0 = [k]× [2], satisfies the conditions in Definition 4.

For k odd, the set in Figure 3.5 has the minimum cardinality necessary for a set
to percolate [k] × [2] and at each time step causes infection of only one site. There-
fore it percolates in the maximum time that is indeed

⌊
3(k−1)

2

⌋
. It is an immediate

observation that it satisfies all conditions of a (k, 2)-perfect set.

. . .
. . . . . .

k

Fig. 3.5. A (k, 2)-perfect set achieving maximum percolation time on [k]× [2] for k odd.

In the next theorem we state the recursive formula for M(k, `). We should keep
in mind the description of (k, `)-perfect initially infected sets because the proof of
the theorem is built on the proof of existence and a construction of such sets. Since
M(k, `) = M(`, k), we shall omit some cases where k < `.

Theorem 5. We have M(1, 1) = M(2, 1) = 0; M(k, 1) = 1 for all k ≥ 3;
M(k, 2) =

⌊
3(k−1)

2

⌋
; and M(3, 3) = 4. For k, ` ≥ 3 such that (k, `) 6= (3, 3), we have

M(k, `) = max



M(k − 1, `− 1) + max{k, `} − 1,

M(k − 2, `) + `+ 1,

M(k, `− 2) + k + 1,

M(k − 2, `− 1) + k + `− 2,

M(k − 1, `− 2) + k + `− 2,

M(k, `− 3) + 2k − 1,

M(k − 3, `) + 2`− 1,

(3.1)

where we assume M(k, 0) = M(0, `) = −∞. Furthermore, for any k, ` > 0 there
exists a (k, `)-perfect set.

Proof. We prove Theorem 5 by induction on k + `. A small case analysis imme-
diately gives the result for ` = 1 and for (k, `) = (3, 3). For ` = 2 we use Lemma 3.1.
Note that in all these cases there exist (k, `)-perfect initial sets for which, in Defini-
tion 4 (of (k, `)-perfect sets), we have r = 0.

Now, assume that we are given k, ` ≥ 3 such that (k, `) 6= (3, 3). Our induction
hypothesis is that for any k′, `′ ≥ 1 such that k′+`′ < k+` there exists a (k′, `′)-perfect
set AM (k′, `′) that percolates in time M(k′, `′), as in the statement of Theorem 5.
We continue the proof as follows. First, we show that M(k, `) is at least the right-
hand-side of equation (3.1). We do this by presenting seven constructions of sets
percolating the [k] × [`] grid in times corresponding to the terms on the right-hand-
side of (3.1). We use our induction hypothesis to estimate the percolation times of
our constructions and to observe that these constructions are “nearly” (k, `)-perfect,
i.e., that they satisfy all properties of (k, `)-perfect sets apart from, possibly, infecting
a [k]× [`] grid in time M(k, `).
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We then move on to bounding M(k, `) from above. Given any set A percolating
[k] × [`] we use Proposition 3 to show that A must satisfy one of the six particular
Conditions that impose upper bounds on the time that A takes to percolate. We
analyse these Conditions one by one, with the last one of them (i.e., with Condition F)
requiring the most detailed analysis, and deduce that the right-hand-side of (3.1) is
an upper bound on M(k, `). This implies that M(k, `) indeed satisfies equation (3.1)
and that (k, `)-perfect sets exist for all values of k and `.

Let W (k, `) denote the right-hand-side of equation (3.1). With this notation, we
want to show that M(k, `) = W (k, `). We shall first prove that

M(k, `) ≥W (k, `). (3.2)

Assume without loss of generality that k ≥ 4. Recall that for k′, `′ ≥ 2 by the
definition of (k′, `′)-perfect sets we may assume that one of the corners of the rectangle
spanned by AM (k′, `′) becomes infected at timeM(k′, `′). Now, consider the following
seven ways of infecting [k]×[`] (see again Figures 3.2 and 3.3), some of which we define
only for slightly larger values of k and `.

1. Let
〈
AM (k − 1, `− 1)

〉
= [k − 1] × [` − 1]. Since k − 1, ` − 1 ≥ 2 we may

assume that (k−1, `−1) becomes infected at timeM(k−1, `−1). Let A(1) =
AM (k−1, `−1)∪{(k, `)}. Then A(1) takes timeM(k−1, `−1)+max{k, `}−1
to percolate.

2. Let
〈
AM (k − 2, `)

〉
= [k − 2] × [`]. Since k − 2, ` ≥ 2 we may assume that

(k − 2, `) becomes infected at time M(k − 2, `). Let A(2) = AM (k − 2, `) ∪
{(k, `)}. Then A(2) takes time M(k − 2, `) + `+ 1 to percolate.

3. For ` ≥ 4 we have k, ` − 2 ≥ 2. Let
〈
AM (k, `− 2)

〉
= [k] × [` − 2]. We

may assume that (k, `− 2) becomes infected at time M(k, `− 2). Let A(3) =
AM (k, `− 2) ∪ {(k, `)}. Then A(3) percolates in time M(k, `− 2) + k + 1.

4. Let
〈
AM (k − 2, `− 1)

〉
= [k − 2] × [` − 1]. Since k − 2, ` − 1 ≥ 2 we may

assume that (k − 2, 1) becomes infected at time M(k − 2, `− 1). Let A(4) =
AM (k−2, `−1)∪{(k, 1), (k, `)}. Then A(4) takes timeM(k−2, `−1)+k+`−2
to percolate.

5. For ` ≥ 4 we have k−1, `−2 ≥ 2. Let
〈
AM (k − 1, `− 2)

〉
= [k−1]×[`−2]. We

may assume that (1, `−2) becomes infected at timeM(k−1, `−2). Let A(5) =
AM (k−1, `−2)∪{(1, `), (k, `)}. Then A(5) takes timeM(k−1, `−2)+k+`−2
to percolate.

6. For ` ≥ 5 we have k, `− 3 ≥ 2. Let
〈
AM (k, `− 3)

〉
= [k]× [`− 3] and assume

that (k, ` − 3) becomes infected at time M(k, ` − 3). Let A(6) = AM (k, ` −
3) ∪ {(k, `− 1), (1, `)}. Then A(6) percolates in time M(k, `− 3) + 2k − 1.

7. For k ≥ 5 an analogous construction to case (6) with a (k − 3, `)-perfect
set AM (k − 3, `) spanning [k − 3] × [`] in time M(k − 3, `). Taking A(7) =
AM (k − 3, `) ∪ {(k − 1, `), (k, 1)} we obtain a set spanning [k] × [`] in time
M(k − 3, `) + 2`− 1.

The above constructions show that inequality (3.2) holds when k, ` ≥ 5. We now
check that inequality (3.2) also holds for the small values of k and ` for which some of
these constructions cannot be applied. Constructions (3) and (5) do not apply when
` = 3 because we cannot ask for one of the corners of the smaller rectangles to become
infected respectively at times M(k, `−2) = 1 and M(k−1, `−2) = 1. However, since
k ≥ 4, in these cases we haveM(k, `−2)+k+1 = k+2 andM(k−1, `−2)+k+`−2 =

k + 2 that is at most M(k − 1, `− 1) + k − 1 =
⌊
3(k−2)

2

⌋
+ k − 1 ≥ k + 2.
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Construction (6) does not apply for ` = 4 since then we again cannot ask for one
of the corners of [k] × [` − 3] to become infected at time M(k, ` − 3) = 1. However,
for ` = 4 we have M(k, ` − 3) + 2k − 1 = 2k that is less than M(k, ` − 2) + k + 1 =⌊
3(k−1)

2

⌋
+ k + 1 ≥

⌊
2k+1

2

⌋
+ k + 1 = 2k + 1. Analogously we deal with the fact that

construction (7) does not apply for k = 4. Thus the lower bound onM(k, `) is proved.
For each of the sets A(j) constructed above, among the sites of

〈
A(j)

〉
that become

infected last there is a corner of [k] × [`]. Thus it is clear that all sets A(j) satisfy
properties (a)-(f) of (k, `)-perfect sets except for, possibly, property (c). To finish the
proof of Theorem 5 we only need to prove the upper bound on M(k, `) analogous to
inequality (3.2). This will imply that at least one of the sets A(j) percolates in time
M(k, `) and therefore is (k, `)-perfect.

Hence, it remains to show that the right-hand-side of equation (3.1) is also an
upper bound on M(k, `), i.e., that

M(k, `) ≤W (k, `). (3.3)

Let A be any set that internally spans the rectangle R = [k]× [`] in time M(k, `).
Consider sets A′, A′′ and rectangles R′, R′′ satisfying conditions 1 and 2 of Proposi-
tion 3. Define T (R′, R′′) to be the time it takes to grow from R′∪R′′ to R = 〈R′ ∪R′′〉,
that is, the time needed to infect all sites in R\(R′∪R′′) given that all sites in R′ and
R′′ are infected and no site in R\(R′∪R′′) is. Note that T (R′, R′′) is a simple function
that depends only on the dimensions of R′ and R′′ and how they are positioned in R
but not on the underlying set A. Let

S(R′, R′′) = max{M(R′),M(R′′)}+ T (R′, R′′).

Notice that S(R′, R′′) also depends only on R′ and R′′. It is clearly seen that for any
choice of A′, A′′ ⊂ A satisfying Proposition 3 we have that S(R′, R′′) is an upper bound
on the time that A takes to percolate. We shall prove that, in order for A to percolate
in time M(k, `), the rectangles R′ and R′′ must be aligned according to (at least) one
of the ways we describe below. In most cases a simple upper bound on S(R′, R′′) will
yield that S(R′, R′′) ≤ W (k, `) and consequently that M(k, `) ≤ W (k, `). However,
in one particular case we might have S(R′, R′′) > W (k, `). We will then need to be
more careful and find an upper bound better than S(R′, R′′) for the time that A takes
to percolate.

In the upcoming cases our technique of bounding S(R′, R′′) will require the fol-
lowing claim saying that under our induction hypothesis the maximum percolation
time is strictly increasing in the size of the underlying grid.

Claim 6. Let s, t be such that s+ t < k+`. If s ≥ 1 and t ≥ 2 then M(s+1, t) ≥
M(s, t) + 1. Similarly, if s ≥ 2 and t ≥ 1 then M(s, t+ 1) ≥M(s, t) + 1.

Proof of Claim 6. Let s ≥ 1 and t ≥ 2. For s = 1, the result is trivial (as
M(2, 2) ≥ 1 and M(1, 2) = 0 and, for t ≥ 3, M(2, t) ≥ 3 and M(1, t) = 1). For
s, t ≥ 2, with s + t < k + `, by the induction hypothesis, we may assume that there
exists a set AM (s, t) which internally spans the rectangle [s]× [t] in time M(s, t) and,
without loss of generality, such that

IAM (s,t)(s, t) = M(s, t) ≥ 1.

Note that we must have some 1 ≤ i ≤ t − 1 such that (s, i) ∈ AM (s, t). Let i∗ be
the smallest such i. Let Ã = AM (s, t) ∪ {(s+ 1, i∗)}. Clearly

〈
Ã
〉

= [s+ 1]× [t] and
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for any j ∈ [t] \ {i∗} we have IÃ(s + 1, j) ≥ IAM (s,t)(s, j) + 1. Thus M(s + 1, t) ≥
IÃ(s+ 1, t) ≥M(s, t) + 1.

Assume without loss of generality thatM(R′) ≥M(R′′). Note that, in order to in-
ternally span R, the rectangles R′ and R′′ must be at distance 0, 1 or 2. Consider some
minimal non-empty rectangle R̃′′ ⊂ R′′ such that R′ ∪ R̃′′ spans R. Whenever R′ and
R′′ intersect, that is whenever dist(R′, R′′) = 0, we can choose R̃′′ so that it is disjoint
from R′. Furthermore, whenever dist(R′, R′′) = 1 then unless R′′ has a side of length
1 we can always choose R̃′′ such that dist(R′, R̃′′) = 2. Since T (R′, R′′) ≤ T (R′, R̃′′)
and (by Claim 6) M(R′) ≥ M(R′′) ≥ M(R̃′′), we have S(R′, R′′) ≤ S(R′, R̃′′). Let
R′ ∈ Rec(s1, t1) and R̃′′ ∈ Rec(s2, t2). With case analysis we find that, since R̃′′ is
chosen to be minimal, R′ and R̃′′ must either satisfy one of the following conditions
or their analogues obtained by swapping k with ` (see Figure 3.6).
Condition A: rectangles R′ and R̃′′ align as in Figure 3.6 (A) with s1 + s2 = k,

t1 + t2 = `.
Condition B: rectangles R′ and R̃′′ align as in Figure 3.6 (B) with s1 + s2 = k − 1

and t1 + t2 = `+ 1.
Condition C: there is an 0 ≤ m ≤ `− 1 so that the rectangles R′ and R̃′′ align as in

Figure 3.6 (C) with s1 + s2 = k − 1, t1 = ` and t2 = 1.
Condition D: there is an 0 ≤ m ≤ `− t1 such that the rectangles R′ and R̃′′ align as

in Figure 3.6 (D) with s1 + s2 = k − 1, t1 < `, t2 = `.
Condition E: there is an 0 ≤ m ≤ `− t1 such that the rectangles R′ and R̃′′ align as

in Figure 3.6 (E) with s1 = k − 1, s2 = 1, t1 < `, t2 = `.
Condition F: there is an 0 ≤ m ≤ `− 1 such that the rectangles R′ and R̃′′ align as

in Figure 3.6 (F) with s1 = k − 1, s2 = 1, t1 = `, t2 = 1.
Before we proceed let us note that by Fact 2 neither Condition D, E nor F could

occur if we had |A| = n. The first two do not cause us many additional complications
and we can deal with them straightforwardly. However, as we shall see, analysing
Condition F is the crucial part of the proof of inequality (3.3). The possibility of this
scenario is what makes the recursive relation forM(k, `) much more complicated than
the one in [8]. Additionally, it has strong implications when we later try to find an
explicit solution to the recursion.

Let us analyse the possible cases one by one. Assume first that Condition A holds.
Note that, in this case,

S(R′, R̃′′) = M(R′) + max{s1 + t2 − 1, s2 + t1 − 1}.

It is easy to check that S(R′, R̃′′) cannot decrease if we “extend” the rectangle R′
and “shrink” R̃′′. In fact, when max{s1, t1} ≥ 2 then we can use Claim 6 and so, for
any i < s2 and j < t2, we have M(s1 + i, t1 + j) ≥M(s1, t1) + i+ j. Together with

max{(s1+i)+(t2−j)−1, (s2−i)+(t1+j)−1} ≥ max{s1+t2−1, s2+t1−1}−max{i, j},

we conclude that the largest value of S(R′, R̃′′) is given when R̃′′ is a single site.
Therefore, S(R′, R̃′′) ≤ M(k − 1, ` − 1) + max{k, `} − 1. When max{s1, t1} = 1
then R′ is a single site. Since we assume M(R′) ≥ M(R̃′′) we would require R̃′′ ∈
Rec(1, 1) ∪ Rec(1, 2) ∪ Rec(2, 1). This yields max{k, `} ≤ 3 which contradicts our
assumption that k, ` ≥ 3 with (k, `) 6= (3, 3).

Now, assume that Condition B (or its analogue with k and ` swapped) holds.
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s2

(A)

R′

R̃′′

t1
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R′ R̃′′ t1

t2 = 1

s1
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(F)

m

R′

R̃′′

Fig. 3.6. The alignments of rectangles R′ and R̃′′ that need to be considered.

Observe that in this case

S(R′, R̃′′) =


M(R′) + max{s1 + t2, s2 + t1}, if t1, t2 ≥ 2,

M(R′) + s2 + t1, if t2 = 1,

M(R′) + s1 + t2, if t1 = 1.

If t1, t2 ≥ 2 then it is easy to reduce this case to the previous one: by Claim 6 we
have M(s1 + 1, t1) ≥M(s1, t1) + 1, while

max{(s1 + 1) + (t2 − 1)− 1, s2 + t1 − 1} = max{s1 + t2, s2 + t1} − 1.

Putting these inequalities together we have S(R′, R̃′′) ≤ S(R+, R−) where R+ ∈
Rec(s1 + 1, t1), R− ∈ Rec(s2, t2 − 1) and R+, R− satisfy Condition A. If t2 = 1, then
t1 ≥ 3 (recall, k, ` ≥ 3). Hence, as in the case of Condition A, we can use Claim 6
and extend R′ rightwards to bound S(R′, R̃′′) from above using the case where R̃′′ is
a single site and obtain S(R′, R̃′′) ≤M(k− 2, `) + `+ 1. Note that swapping k and `
gives the bound S(R′, R̃′′) ≤M(k, `− 2) + k + 1.
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Finally, if t1 = 1 then t2 ≥ 3 and, since M(R′) ≥ M(R̃′′), also s2 = 1. In this
case all corners of R′ and R̃′′ must be initially infected and we can improve the bound
S(R′, R̃′′) = M(R′) + s1 + t2 to s1 + t2 = k + `− 2. Then, R becomes infected after
at most k+ `− 2 steps which is not more than M(k− 1, `− 1) + max{k, `}− 1 for all
k, ` ≥ 3.

Suppose now that Condition C holds. Note that, for a fixed R′ and given m, we
have S(R′, R̃′′) = M(R′) + max{m + s2 + 1, t1 −m + s2} which is maximum when
m = 0 or m = t1 − 1 and this case is equivalent to Condition B with t2 = 1.

Hence we see that

max


M(k − 1, `− 1) + max{k, `} − 1,

M(k − 2, `) + `+ 1,

M(k, `− 2) + k + 1,

(3.4)

is the maximum percolation time in [k]× [`] when we restrict ourselves to rectangles
R′ and R̃′′ that satisfy Conditions A, B or C.

We shall prove that the same bound applies when either Condition D or E holds,
reducing the analysis of those cases to one of Conditions A, B or C. Thus, consider
the case when Condition D applies to R′ and R̃′′. Recall thatM(R′) ≥M(R̃′′). Given
m we have

S(R′, R̃′′) = M(R′) + max{s1 +m+ 1, s1 + t2 −m− t1 + 1}.

that attains its maximum when m = 0 or m = t2 − t1. However, for these values of
m we could further shrink R̃′′ by setting t2 = `− t1 + 1 and hence reducing this case
to the one where Condition B holds. (If m = 0 and t1 = 1 then R1 and R̃′′ already
satisfy both Condition D and B.)

We deal with R′ and R′′ satisfying Condition E in an analogous way, bound-
ing S(R′, R̃′′) from above by taking m = 0 and then reducing it to the case where
Condition A is satisfied.

Finally let us consider the case where Condition F, or its version with k and `
swapped, applies to R′ and R̃′′. In this case we need to be more careful: using similar
arguments as before we can only conclude that

S(R′, R̃′′) =

{
M(R′) + max{m, `−m− 1} ≤M(R′) + `− 1, if R′ ∈ Rec(k − 1, `),

M(R′) + max{m, k −m− 1} ≤M(R′) + k − 1, if R′ ∈ Rec(k, `− 1).

(3.5)
Unfortunately this bound is not good enough to prove inequality (3.3). To improve
it we need to analyse how the proximity of R̃′′ affects the infection process inside R′.

Recall that we initially chose R′ and R′′ together with A′, A′′ ( A spanning them
according to Proposition 3. We later chose R̃′′ ⊂ R′′ and we assumed that Condition F
applies to R′ and R̃′′. However, when R′ = [k − 1] × [`] then we see that A′′ must
contain a site of the form (k, i) for some 1 ≤ i ≤ ` (this site is of course disjoint
from R′). This is because R′ and R′′ together span R. Thus we in fact can assume
that R′ (internally spanned by A′) and R′′ (which is a single site) satisfy Condition F
(ignoring the influence of some sites in A′′ could not decrease the percolation time of
A).

To continue the analysis of this case we shall need the following claim.
Claim 7. Let A be a set of sites percolating in R = [k]× [`] where k, ` ≥ 2. Then

for any site (i, j) ∈ R \ {(1, 1), (1, `), (k, 1), (k, `)} we have IA(i, j) ≤M(k, `)− 1.
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Proof of Claim 7. It is enough to prove the claim for all percolating sets minimal
under containment (as for any A ⊂ B we have IB(i, j) ≤ IA(i, j) for all i, j). Let A
be such a set. Applying Proposition 3 to R and A we obtain sets A′ and A′′ that
partition A and internally span two rectangles R′, R′′ ( R such that 〈R′ ∪R′′〉 = R.
Note that, by the minimality of A, the set R \ (R′ ∪R′′) contains no initially infected
sites.

If k = ` = 2 then all sites in [k]×[`] are corners and the claim is trivial. If, without
loss of generality, k > 2 thenM(k, `) > 1. By Claim 6 we have max{M(R′),M(R′′)} <
M(k, `). Hence for any (i, j) ∈ R′ ∪ R′′ we have IA(i, j) ≤ max{M(R′),M(R′′)} <
M(k, `). Now, let

B = R \ (R′ ∪R′′ ∪ {(1, 1), (1, `), (k, 1), (k, `)}) .

If {(1, 1), (1, `), (k, 1), (k, `)} ⊂ R′ ∪ R′′ and B 6= ∅ then Φ(R′),Φ(R′′) ≤ k + ` − 2
(see Figure 3.7) and therefore by Claim 6 we have M(R′),M(R′′) ≤ M(R) − 2 and
hence for any (i, j) ∈ B we have IA(i, j) ≤ M(k, `) − 1. Thus we may assume that
R \ (R′ ∪R′′) contains some corner site of R. Let (i, j) be any site of B. We consider
the two following cases:

• If dist(R′, R′′) = 2 then M(R′),M(R′′) ≤ M(R) − 2. Thus, if we have
dist((i, j), R′) = dist((i, j), R′′) = 1 then

IA(i, j) ≤ max{M(R′),M(R′′)}+ 1 ≤M(k, `)− 1.

• If either dist(R′, R′′) = 2 and dist((i, j), R′) 6= 1 or dist((i, j), R′′) 6= 1, or if
dist(R′, R′′) 6= 2, then no matter how the rectangles R′ and R′′ are aligned
we can find a corner site (k′, `′) ∈ R \ (R′ ∪ R′′) such that to infect (k′, `′)
in the process we need to infect (i, j) first. This follows from the fact that
the rectangular region in R \ (R′ ∪R′′) that contains (k′, `′) becomes infected
starting from its own corner opposite (k′, `′). Thus IA(i, j) < IA(k′, `′) ≤
M(k, `).

Fig. 3.7. The alignment of R′ and R′′ containing all 4 corner sites

This completes the proof of the claim.
An important consequence of Claim 7 is that when rectangles R′ and R′′ in R

satisfy Condition F then, no matter how we locateR′′ inR, the infection ofR\(R′∪R′′)
starts at the latest at time M(R′)− 1. This improves the bound on the time that A
takes to percolate given in inequality (3.5) to

S(R′, R′′) ≤ max

{
M(R′) + `− 2, if R′ ∈ Rec(k − 1, `)

M(R′) + k − 2 if R′ ∈ Rec(k, `− 1)
(3.6)

To finish the proof of Theorem 5 we apply Proposition 3 to R′ (we can do this
as k, ` ≥ 3 and R′′ is a single site). So let A′ be partitioned into sets A′1 and A′2
spanning rectangles R′1 and R′2 respectively, satisfying Proposition 3. Assume that
M(R′1) ≥M(R′2).
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If R′1 and R′2 satisfy Condition F inside R′, with R′2 being a single site, then we
can bound the (total) time that A takes to percolate in a much better way than using
inequality (3.6). In fact, considering the possible cases it can, again, be bounded from
above by (3.4). This follows from the fact that dist(R′1, R

′′) ≤ 2 and therefore, with
R′1 fully infected, the processes of infecting R′ \ (R′1 ∪R′2) and 〈R′1 ∪R′′〉 \ (R′1 ∪R′′)
run simultaneously.

In the remainder we assume that R′1 and R′2 satisfy one of the conditions (A)-(E)
in R′ and we improve the bound (3.6) by replacing M(R′) with a better bound on
the time that A′ takes to percolate in R′.

If R′1 and R′2 satisfy Condition B or C in R′ then, by what we already know about
the bounds for these conditions (i.e., that the upper bound on M(R′) is the weakest
when R′2 is a single site, see (3.4) with the dimensions of R′ in place of k and `), the
bound in (3.6) is at most

max


M(k − 2, `− 1) + k + `− 2,

M(k − 1, `− 2) + k + `− 2,

M(k, `− 3) + 2k − 1,

M(k − 3, `) + 2`− 1.

If R′1 ∈ Rec(s1, t1) and R′2 ∈ Rec(s2, t2) inside R′ satisfy Condition A then R′′,
R′1 and R′2 are (up to simple rotations), for some m ≤ t1 + t2 − 1, mutually aligned
as in Figure 3.8 (where R′′ is depicted with a shaded square).

t1

t2

s1

s2

m
R′1

R′2

Fig. 3.8. Condition A followed by Condition F

Let us analyse the possible cases conditioning on the value of t2. If t2 = 1 then
we have dist(R′1, R

′′) ≤ 2 so the infection of 〈R′1 ∪R′′〉 \ (R′1 ∪R′′) starts at the latest
at time M(R′1). As before, by Claim 6, we can shrink R′′2 , and so the upper bound on
percolation time is maximized for s2 = 1. In this case the largest bound on M(k, `)
is achieved when m = 0 and is equal to

max

{
M(k − 1, `− 2) + max{k, `} − 1

M(k − 2, `− 1) + max{k, `} − 1
< M(k − 1, `− 1) + max{k, `} − 1.

If t2 > 1 then, by Claim 6 and Claim 7, the bound on percolation time is max-
imized either for t2 = 2, s2 = 1 and m = t1 + t2 − 1 which as the upper bound on
M(k, `) gives

M(k − 2, `− 2) + k + `− 3 ≤M(k − 2, `− 1) + k + `− 2,
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or for s1 = 2, t1 = 1 and m = t1 + t2 − 1 which as the upper bound gives

max

{
M(k − 1, `− 3) + 2k − 2

M(k − 3, `− 1) + 2`− 2
≤ max

{
M(k, `− 3) + 2k − 1

M(k − 3, `) + 2`− 1
,

or for s1 = 1, t1 = 1 and m = t1 + t2 − 1 which as the upper bound gives

max

{
M(k − 1, `− 2) + max{k + 1, `− 2}
M(k − 2, `− 1) + max{k − 2, `+ 1}

≤ max

{
M(k − 1, `− 2) + k + `− 2

M(k − 2, `− 1) + k + `− 2
.

Thus the upper bound on the percolation time of A obtained when Condition A holds
for R′1, R′2 inside R′ is at most W (k, `), i.e., the maximum in the right-hand-side of
equation (3.1).

Finally, if R′1 and R′2 inside R′ satisfy Condition D or E with M(R′1) ≥ M(R′2)
then, as already noted, by setting m = 0 and shrinking R′2 we can bound from above
the percolation time of A′ by the bounds obtained under conditions A and B. That
completes the proof of the upper bound on M(k, `) and of Theorem 5.

Remark 8. Relation (3.1) does not allow us to immediately give an exact formula
for M(n). However, with the use of a computer we can evaluate M(n) and at the
same time find an (n, n)-perfect set. Our simulations suggest that these sets have
size approximately 23n

18 + O(1) (for example, for n = 1000 it is 1277). In the next
section we find the asymptotic formula for M(n). For the lower bound we shall use
sets similar to those suggested by our computations.

4. Computing the asymptotic value of M(n). In this section we use the
existence of (n, n)-perfect sets to compute the asymptotic value of M(n). We say
that a (k, `)-perfect set A together with the sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂
Pr ∈ Rec(k, `) associated with it are described by a triple (s0, t0,m1m2 . . .mr) if
P0 ∈ Rec(s0, t0) and additionally, for 1 ≤ i ≤ r, Move mi is used to obtain Pi from
Pi−1. We write T0 = M(P0) and, for i ≥ 1, we denote by Ti the additional time it takes
to infect the sites of Pi after all sites of Pi−1 are infected. We say that T0, T1, . . . , Tr is
the time sequence of A. Finally, we say that a triple (s0, t0,m1m2 . . .mr) is a scheme
solving M(k, `) if it describes a (k, `)-perfect set.

Note that a triple (s0, t0,m1m2 . . .mr) may describe multiple (n, n)-perfect sets
since it only determines the dimensions of the rectangles Pi but not their precise
coordinates. Nevertheless, all (n, n)-perfect sets described by (s0, t0,m1m2 . . .mr)
have the same time sequence. Note that if T0, T1, . . . , Tr is a time sequence of an
(n, n)-perfect set then M(n) =

∑r
i=0 Ti.

Observation 9. Let (s0, t0,m1m2 . . .mr) be a scheme and P0 ⊂ P1 ⊂ . . . ⊂ Pr
be the sequence of rectangles generated by it. Then for any 1 ≤ j ≤ r the triple
(s0, t0,m1m2 . . .mj) is a scheme. In particular, it describes a set that percolates Pj
in maximum time.

Remark 10. In Appendix A we consider a number of small cases and show that
for any k, ` ≥ 3, (k, `) 6= (3, 3), there exists a scheme (s0, t0,m1m2 . . .mr) that solves
M(k, `) and is such that either s0 ≥ 3 and t0 = 2 or s0 = 2 and t0 ≥ 3.

Let a, b be natural numbers and let x1 . . . xa and y1 . . . yb be sequences of moves.
We say that these sequences are compatible if applying moves x1 . . . xa to a certain
rectangle R yields a rectangle with the same dimensions as when applying moves
y1 . . . yb to R. For example, for any 1 ≤ i, j ≤ 7, the sequence ij is compatible with
ji, the sequence 61 is compatible with 35, the sequence 111 is compatible with 45,
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but 12 is not compatible with 13 (because the order of dimensions of the resulting
rectangle matters).

Fix 1 ≤ i ≤ r and let Pi ∈ Rec(k, `). Clearly the value of Ti depends only on
k, ` and mi. We list its possible values in Table 4.1 (see also equation (3.1)). For
2 ≤ i ≤ r, applying this argument twice, we can compute the value of Ti + Ti−1 as
a function of k, `, mi and mi−1 only. In Table 4.2 we list the values of Ti + Ti−1 for
mi,mi−1 ∈ {2, 3, 4, 5, 6, 7} and in Table 4.3 we list the values of Ti+Ti−1 when either
mi = 1 or mi−1 = 1.

mi Pi−1 Ti

1 (k − 1, `− 1) max{k, `} − 1
2 (k − 2, `) `+ 1
3 (k, `− 2) k + 1
4 (k − 2, `− 1) k + `− 2
5 (k − 1, `− 2) k + `− 2
6 (k, `− 3) 2k − 1
7 (k − 3, `) 2`− 1

Table 4.1
Dimensions of Pi−1 and value of Ti

given mi, assuming that Pi ∈ Rec(k, `).

`

k

1
4

5

2 7

3

6

Fig. 4.1. Direction of each Move.

mi = 2 mi = 3 mi = 4

mi−1 = 2 2`+ 2 k + ` k + 2`− 2
mi−1 = 3 k + ` 2k + 2 2k + `− 3
mi−1 = 4 k + 2`− 3 2k + `− 3 2k + 2`− 7
mi−1 = 5 k + 2`− 3 2k + `− 3 2k + 2`− 7
mi−1 = 6 2k + `− 4 3k 3k + `− 7
mi−1 = 7 3` k + 2`− 4 k + 3`− 5

mi = 5 mi = 6 mi = 7

mi−1 = 2 k + 2`− 3 2k + `− 3 3`
mi−1 = 3 2k + `− 2 3k k + 2`− 3
mi−1 = 4 2k + 2`− 7 3k + `− 6 k + 3`− 6
mi−1 = 5 2k + 2`− 7 3k + `− 6 k + 3`− 6
mi−1 = 6 3k + `− 5 4k − 2 2k + 2`− 8
mi−1 = 7 k + 3`− 7 2k + 2`− 8 4`− 2

Table 4.2
Values of (Ti + Ti−1) for mi,mi−1 ∈ {2, 3, 4, 5, 6, 7}, assuming that Pi ∈ Rec(k, `).

Initially the object of our interest in Table 4.2 and Table 4.3 is whether, for each
pair (a, b) with 1 ≤ a, b ≤ 7, for Pi ∈ Rec(k, `) the value of (Ti + Ti−1) is larger when
(mi−1,mi) = (a, b) or when (mi−1,mi) = (b, a). We summarize the answer to that
question in Figure 4.2 that tells us what pairs of consecutive moves are prohibited
in a scheme (because one could swap them and obtain a slower percolating process).
A solid directed edge from a to b means that, no matter what the values of k and
` are, it takes strictly longer to apply Move b right before Move a than it takes to
apply them in the opposite order. Thus in this case the consecutive pair of moves
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(mi−1,mi) = (j, 1) (mi−1,mi) = (1, j)

j = 1 2 max{k, `} − 3 2 max{k, `} − 3
j = 2 max{k, `}+ `− 1 `+ max{k, `− 2}
j = 3 max{k, `}+ k − 1 k + max{k − 2, `}
j = 4 max{k, `}+ k + `− 5 k + `+ max{k − 2, `− 1} − 3
j = 5 max{k, `}+ k + `− 5 k + `+ max{k − 1, `− 2} − 3
j = 6 max{k, `}+ 2k − 4 2k + max{k, `− 3} − 2
j = 7 max{k, `}+ 2`− 4 2`+ max{k − 3, `} − 2

Table 4.3
Possible values of (Ti + Ti−1) for mi = 1 or mi−1 = 1, assuming that Pi ∈ Rec(k, `).

ab inside a scheme is prohibited. A dashed directed edge from a to b means that, no
matter what the values of k and ` are, it always takes at least as much time to apply
Move b followed by Move a as it takes to do it in the opposite order. Hence ab is not
prohibited but might be avoided in a scheme. A dashed undirected edge means that
the order of moves a and b maximizing the value of (Ti +Ti−1) depends on the values
of k and `. No edge between a and b means that the order we use does not affect the
value of (Ti + Ti−1).

12 3

56

4 7

Fig. 4.2. Relation between pairs of consecutive moves (mi−1,mi) and the value of (Ti + Ti−1).

Our proof will deal with sequences of moves and in order to describe these we
shall use the following notation. We say that a finite (possibly empty) sequence of
moves is of the form [a1|a2| . . . |ar]∗ if all its terms belong to {a1, a2, . . . , ar} ⊆ [7];
we say that it is of the form [a1|a2| . . . |ar]≤j if, in addition, it has at most j terms.
We shall concatenate these expressions to create more general ones that describe
the corresponding sets of concatenated sequences of moves. For example, all of the
sequences 1444336366, 43333, 16633 are of the form [1]≤1[4]∗[3|6]∗, but 144334 is not.

Next, we prove a series of propositions about schemes forM(k, `). These proposi-
tions will allow us to gain control over the structure of the schemes and consequently,
implementing additional machinery, to give tight bounds on M(n).

Proposition 11. For any k, ` ≥ 3, (k, `) 6= (3, 3), there exists a scheme solving
M(k, `) of the form (s0, t0, [1|2|3]∗[4|5|6|7]∗) with s0 ≥ 3, t0 = 2 or s0 = 2, t0 ≥ 3.

Proof. Given k, `, consider a scheme Q = (s0, t0,m1m2 . . .mr) with s0 ≥ 3, t0 = 2
or s0 = 2, t0 ≥ 3 that solves M(k, `) (which exists by Remark 10) that minimizes the
sum S =

∑
mi∈{1,2,3} i. Proposition 11 follows immediately from the following claim:

in such a scheme, for any i with 2 ≤ i ≤ s, if mi is equal to 1, 2 or 3 then mi−1 is
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equal to 1, 2, or 3. Let us prove that this claim holds.
Fix 2 ≤ i ≤ r. Assume first that mi = 2. In Figure 4.2 we see that mi−1 /∈ {4, 6}

and that ifmi−1 ∈ {5, 7} then we could swap the order of (mi−1,mi) without changing
percolation time and at the same time decreasing the value of S, contradicting the
choice of Q. Therefore mi−1 must be either 1, 2 or 3. The case where mi = 3 is
analogous.

Assume now that mi = 1. If mi−1 ∈ {4, 5} then we could swap the order of
(mi−1,mi) without decreasing percolation time and at the same time decreasing the
value of S, contradicting the choice of Q. Now, suppose that mi−1 = 6. If k ≥ ` then,
as shown in Table 4.3,

Ti−1 + Ti = max{k, `}+ 2k − 4 < 2k + max{k, `− 3} − 2

in which case we could set (mi−1,mi) = (1, 6) and increase percolation time. If k < `
then again in Table 4.3 we find that

Ti−1 + Ti = max{k, `}+ 2k − 4 < 2k + `− 2

in which case we can set (mi−1,mi) = (3, 5) and increase percolation time. In either
case, we contradict the fact that Q is a scheme. Therefore mi−1 6= 6. We show that
mi−1 6= 7 in an analogous way: one could either swap (7, 1) or replace it by (2, 4) in
order to increase percolation time (doing one or the other depending on the values of
k and `). Therefore we must have mi−1 equal to 1, 2 or 3.

Before we continue our investigations of the form of the schemes that solveM(k, `)
let us make the following two observations about the infection process started from a
(k, `)-perfect set.

Observation 12. For any i ≥ 1, no matter which move (1 − 7) is used at
moment i, between time step M(Pi−1) + 1 and time step M(Pi) (when the infection
of the rectangle Pi is complete) at each step at most two new sites become infected.

Observation 13. For any i ≥ 1, if si−1, ti−1 ≥ 2, then the following statements
hold.

1. If we use Move 1 at moment i then there are exactly |si−1 − ti−1| time steps
between M(Pi−1) + 1 and M(Pi) (when all sites of Pi are infected) when only
one new site becomes infected. These are M(Pi)− |si−1 − ti−1|+ 1,M(Pi)−
|si−1 − ti−1|+ 2, . . . ,M(Pi).

2. If we use Move 2 or 3 at moment i then there are exactly 3 time steps between
M(Pi−1)+1 and M(Pi) (when all sites of Pi are infected) when only one new
site becomes infected. These are M(Pi−1) + 1,M(Pi−1) + 2,M(Pi).

From Observation 12 and Observation 13 the following claim follows. Its proof is
simple but rather technical and fully analogous to Claim 13 in [8] therefore, for the
sake of brevity, we leave it without proof.

Claim 14. Suppose that there exists a (k, `)-perfect set A internally spanning a
rectangle R ∈ Rec(k, `) with a sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `)
associated with it, described by a triple of the form (s0, t0, [1|2|3]∗) with s0 ≥ 3, t0 = 2
or s0 = 2, t0 ≥ 3. Then there exists a (k, `)-perfect set A′ internally spanning the
rectangle R ∈ Rec(k, `) described by a triple of the form (s0, t0, [2]∗[1]∗[3]∗), or of the
form (s0, t0, [3]∗[1]∗[2]∗).

Proposition 15. For any n ≥ 4 there exists a scheme Q either of the form
(s0, 2, [1]∗[3]∗[4|5|6|7]∗) or of the form (s0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗) with s0 ≥ 3 that
solves M(n).
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Proof. Consider a scheme Q = (s0, 2,m1m2 . . .mr) with s0 ≥ 3 and sequence
m1m2 . . .mr of the form [1|2|3]∗[4|5|6|7]∗ which exists by Proposition 11 (by symme-
try, when k = ` = n, we might assume t0 = 2).

Let j = max{i : mi ∈ {1, 2, 3}}. By Observation 9 the sequence of moves
m1 . . .mj is such that the time taken to infect Pj is maximum. Therefore, by
Claim 14, we see that we may take m1 . . .mj of the form [2]∗[1]∗[3]∗ or of the
form [3]∗[1]∗[2]∗. We observe that in the first case we obtain a scheme Q′ of the
form (s′0, 2, [1]∗[3]∗[4|5|6|7]∗), as the triple (s0, 2, [2]∗[1]∗[3]∗[4|5|6|7]∗) gets simplified
to (s′0, 2, [1]∗[3]∗[4|5|6|7]∗) (where s′0 = s0 + 2a for a equal to the number of times
that Move 2 occurs in m1 . . .mj). In the second case we have a scheme of the form
(s′0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗).

Proposition 16. For any n ≥ 4 there exists a scheme Q either of the form
(s0, 2, [1]≤1[3]≤2[4|5|6|7]∗) or of the form (s0, 2, [3]≤2[1]≤1[2]∗[4|5|6|7]∗) with s0 ≥ 3
that solves M(n).

Proof. By Proposition 15 there exists a scheme Q = (s0, t0,m1m2 . . .mr) that is
either of the form (s0, 2, [1]∗[3]∗[4|5|6|7]∗) or of the form (s0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗).
Let us consider these cases separately.

Assume first that there exists Q of the form (s0, 2, [1]∗[3]∗[4|5|6|7]∗), and choose
one for which the number of times it uses Move 1 is minimal. Let j = max{i : mi = 1}.
Let Pj ∈ Rec(sj , tj). Assume that Move 3 was used at least three times. For sj ≥ 5,
we could replace the last occurrence of the sequence 333 by the compatible sequence
66 without decreasing percolation time. For 3 ≤ sj ≤ 4, we consider all possible
options for Q′ = (s0, t0,m1 . . .mj), and note that either:

1. Q′ = (3, 2, 333) which takes strictly less time (15 steps) to span R ∈ Rec(3, 8)
than Q′′ = (2, 7, 1) does (16 steps), or

2. Q′ = (3, 2, 1333) which takes strictly less time (21 steps) to span R ∈ Rec(4, 9)
than Q′′ = (2, 9, 2) does (22 steps), or

3. Q′ = (4, 2, 333) which takes strictly less time (19 steps) to span R ∈ Rec(4, 8)
than Q′′ = (2, 5, 15) does (21 steps).

By Observation 9 none of the above Q′ can be an initial segment of Q. Thus there
must exist Q of the form (s0, 2, [1]∗[3]≤2[4|5|6|7]∗). Now, assume that Move 1 is used
at least twice, say, Q is of the form (s0, 2, 11m3m4 . . .mr). If s0 ≥ 4, then Q can be
replaced by (s0 − 1, 2, 14m3m4 . . .mr) for which we still have P2 ∈ Rec(s0 + 2, 4) and
the percolation time of which is at least as big as for Q because

T0 + T1 + T2 = M(s0, 2) + s0 + (s0 + 1) =

⌊
7s0 − 1

2

⌋
and the time sequence of the modified sequence of moves gives

T ′0 + T ′1 + T ′2 = M(s0 − 1, 2) + (s0 − 1) + ((s0 + 2) + 4− 2) =

⌊
7s0
2

⌋
.

In fact, since in Figure 4.2 there is a dashed directed edge from 4 to 1 and no edge
between 4 and 3 we can move the new Move 4 further in the sequence and obtain Q̃ of
the form (s0, 2, [1]∗[3]≤2[4|5|6|7]∗) in which the number of times that we use Move 1 is
strictly smaller than in Q. This contradicts the minimality of the number of Move 1s
used in Q. Finally, if s0 = 3 then it is enough to notice that (3, 2, 11) takes strictly less
time (10 steps) to percolate in R ∈ Rec(5, 4) than (5, 2, 3) does (12 steps). Therefore
Move 1 must be used at most once. Thus Q is of the form (s0, 2, [1]≤1[3]≤2[4|5|6|7]∗)
as stated.
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Hence let us assume that there exists a scheme Q solving M(n) of the form
(s0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗). By the same argument as in the first case we can conclude
that Move 3 is used at most two times. In fact, the only difference is that here we
do not need to consider the subcase Q′ = (3, 2, 1333) in our analysis. Therefore there
must exist a scheme of the form (s0, 2, [3]≤2[1]∗[2]∗[4|5|6|7]∗).

Assume that Move 1 is used at least twice. If Move 3 is not used then Q is of the
form (s0, 2, 11m3m4 . . .mr) and we can get a contradiction as in the first case. So,
Move 3 must be used once or twice. It follows from Observation 13 that, when we limit
ourselves to sequences of the form (s0, 2, [1|3]∗), the slowest sequences are obtained
when Move 1s are applied to rectangles in which the difference between the length of
their longer and their shorter side is maximum. This means that Move 3s could be
used before Move 1 only if after using them the difference between the lengths of the
sides of the rectangle we obtained was at least as large as s0 − t0 = s0 − 2. However,
since Move 3 is used at most twice then, unless s0 is small, by putting Move 1s before
3s we obtain a sequence slower than if we did it the other way. More precisely, the
only cases in which putting Move 3s before 1s could possibly increase the percolation
time are those where s0 − 2 < 3 and the initial sequences of steps in Q are:

1. Q′ = (3, 2, 311) which takes strictly less time (16 steps) to span R ∈ Rec(5, 6)
than Q′′ = (2, 5, 12) does (18 steps), or

2. Q′ = (3, 2, 3311) which takes strictly less time (24 steps) to span R ∈ Rec(5, 8)
than Q′′ = (2, 3, 155) does (25 steps), or

3. Q′ = (4, 2, 3311) which takes strictly less time (27 steps) to span R ∈ Rec(6, 8)
than Q′′ = (2, 7, 17) does (31 steps).

As in the first case, sets described by triples Q′′ span the same rectangles as those
spanned by sets described by corresponding triples Q′. Thus we see that the triples
Q′ are not initial segments of schemes. This implies that Move 1 is used at most once,
that is, in the second case Q is of the form (s0, 2, [3]≤2[1]≤1[2]∗[4|5|6|7]∗) as stated.

We are now ready to prove our main result.
Proof of Theorem 1. We begin proving thatM(n) ≥ 13

18n
2+O(n) by constructing

a particular family of percolating sets described by triples of the form (s0, 2, 1[4]∗[6]∗).
(However, these sets are not necessarily (n, n)-perfect.) We consider the following way
of spanning [n]2 for n ≥ 6:

1. choose a natural number s ∈ (n3 − 3, n3 + 3] such that 6|n+ s− 5 (note that,
in particular, this implies 2|n− s− 1),

2. in Phase 1 span a rectangle P0 ∈ Rec(s, 2) in the maximum possible time,
3. in Phase 2 obtain P1 ∈ Rec(s+ 1, 3) by applying Move 1 to P0,
4. in Phase 3 obtain Pn−s+1

2
∈ Rec(n, n−s+5

2 ) by applying Move 4 n−s−1
2 times,

5. in Phase 4 obtain P 2n−s−1
3

= [n]2 by applying Move 6 n+s−5
6 times.

Let us compute the time it takes to span [n]2 this way:
1. Phase 1 takes time

⌊
3(s−1)

2

⌋
≥ n

2 − 7,
2. Phase 2 takes time s > n

3 − 3,
3. Phase 3 takes time

n−s−3
2∑
i=0

(s+ 5 + 3i) =
3n2 − 2sn− s2 + 8n− 12s− 11

8
>

5n2

18
+
n

2
+ 7,

4. Phase 4 takes time

n+ s− 5

6
(2n− 1) =

2n2 − 11n+ 2ns− s+ 5

6
>

8n2

18
− 26n

9
+

4

3
.
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s = 5

n−s+5
2 = 6

Fig. 4.3. Example of a set giving a lower bound for n = 12

Therefore, this way of infecting [n]2 takes time at least 13n2

18 −
14n
9 −

5
3 to complete

and the lower bound on M(n) is proved.
To find an upper bound on M(n), we would like to improve Proposition 16 and

show that there is a scheme of the form (s0, 2, [1]≤1[4]∗[6]∗). The main issue is that,
due to the cycle 4 → 7 → 5 → 6 → 4 in Figure 4.2, there is no obvious way to order
Move 4s, 5s, 6s and 7s in our schemes. Another problem we would have to face is the
fact that divisibility constraints restrict the number of times we can apply particular
moves to eventually construct the n× n square.

To deal with both issues we shall introduce a more general and rather abstract
process in which fractional Moves 4, 5, 6 and 7 can be applied. In this process, our
aim is also to infect the square [n]2. It will be obvious that the maximum spanning
time in this new process is at least as big as in the 2-neighbour bootstrap percolation.
To be more precise, we will allow the following fractional moves (recall Figure 4.1).
For x ∈ (0,∞)

1. Move (4, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s+ 2x, t+x)
in time x(s+ t+ 1) + 3(x2 − x)/2.

2. Move (5, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s+x, t+ 2x)
in time x(s+ t+ 1) + 3(x2 − x)/2.

3. Move (6, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s, t+ 3x) in
time x(2s− 1).

4. Move (7, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s+ 3x, t) in
time x(2t− 1).

We note that the amount of time that each fractional move takes was chosen so
that: (a) for fixed i ∈ {4, 5, 6, 7} and positive real numbers x, y, applying Move (i, x)
to a rectangle R to get some rectangle R′ and then applying Move (i, y) to R′, is
equivalent to applying Move (i, x + y) to R only; (b) when x is a natural number
then applying Move (i, x) is equivalent to applying the original Move i exactly x
times. Crucially, using the new fractional moves we shall be able to get rid of Move
5 completely so that the remaining moves will be easy to order.

Let us note that although the first part of Section 4 could be seen as a significant
extension of the methods developed in [8], the idea of fractional moves is a new concept
that has not been studied before.
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Let Q = (s0, 2,m1m2 . . .mr) be a scheme solving M(n) of the form

(s0, 2, [1]≤1[3]≤2[4|5|6|7]∗) or (s0, 2, [3]≤2[1]≤1[2]∗[4|5|6|7]∗),

that exists by Proposition 16. Let A be an (n, n)-perfect set determined by Q and
let P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(n, n) be the sequence of rectangles associated with it
with Pi ∈ Rec(si, ti). Let j0 be such that Pj0 is the rectangle obtained after the last
occurrence of any of the Move 1s, 2s or 3s. If there are no such moves, we set j0 = 0.
Since Move 1 is applied at most once and Move 3 at most twice we have tj0 ≤ 7.
Hence there is a scheme in which we first infect a rectangle R ∈ Rec(sj0 , tj0) where
tj0 ≤ 7 and then apply only Move 4s, 5s, 6s or 7s. Without loss of generality assume
that sj0 ≥ tj0 .

Using (fractional) moves we shall first construct a particular triple

Q′ = (s0, 2,m1 . . .mj0(m′j0+1, xj0+1)(m′j0+2, xj0+2) . . . (m′r′ , xr′))

that infects [n]2 in our generalized process in time at least as big asQ does in bootstrap
percolation, and then bound from above the time it takes to execute Q′. Recall that
by using Move mi in Q we finish infection of a rectangle Pi ∈ Rec(si, ti). We build
Q′ using the following procedure in which our aim is to ensure that at each step
j ≥ j0 the rectangles P ′j ∈ Rec(s′j , t

′
j) that we obtain in the generalized process satisfy

s′j ≥ t′j . This allows us to eliminate all occurrences of Move 5 (for an example of this
procedure see Figure 4.4). Set h = j0 + 1 and for i = j0 + 1, j0 + 2, . . . , r let:

1. If mi = 4 or mi = 7 put m′h = mi, xh = 1 and increase h by 1.
2. If mi = 6 and si ≥ ti put m′h = 6, xh = 1 and increase h by 1.
3. If mi = 5 and si ≥ ti put m′h = 4, m′h+1 = 6, xh = xh+1 = 1/2 and increase
h by 2; note that in the generalized process this pair of fractional moves takes
time

si−1 + ti−1 + 1

2
− 3

8
+

2(si−1 + 1)− 1

2
=

3si−1 + ti−1
2

+
5

8
,

while the original Move 5 takes si−1 + ti−1 + 1 steps which is less than the
former value as we must have si−1 ≥ ti−1 + 1.

4. If mi = 5 or mi = 6 and si−1 = ti−1 then
• redefine Q by, for i ≤ ` ≤ r, changing each m` = 4 to 5, m` = 5 to 4,
m` = 6 to 7 and m` = 7 to 6,

• note that after this “mirror reflection” the spanning time of Q does not
change,

• since now mi = 4 or mi = 7 then, like in case 1, put m′h = mi, xh = 1
and increase h by 1.

5. If mi = 6 and si−1 = ti−1 + 2 (and hence si = ti − 1) then
• redefine Q by setting mi = 5 so that si = ti + 1 and, for i+ 1 ≤ ` ≤ r,

by changing each m` = 4 to 5, m` = 5 to 4, m` = 6 to 7 and m` = 7 to
6,

• note that both the new and the old Move mi take 2si−1 − 1 time steps
and that after this modification Q still spans [n]2 in maximum time,

• put m′h = 4, m′h+1 = 6, xh = xh+1 = 1/2 and increase h by 2; note that,
like in case 3, in the generalized process this pair of fractional moves
takes strictly more steps than the original Move 5.

6. Finally we show that the only missing case mi = 6, si−1 = ti−1 + 1 and
si = ti − 2 cannot occur: if it did then we could increase the spanning
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time of Q by 1 step (contradicting its maximality) by applying the following
modifications:
• redefine Q by setting mi = 4 and, for i + 1 ≤ ` ≤ r, by changing each
m` = 4 to 5, m` = 5 to 4, m` = 6 to 7 and m` = 7 to 6,

• note that now si = ti + 2 and that after this “mirror reflection” Q still
spans [n]2,

• new Move mi takes si−1 + ti−1 + 1 = 2si−1 time steps while the old
Move mi took 2si−1 − 1 time steps; further steps take the same time as
before thus Q could not be a scheme.

`

ksi

ti

Fig. 4.4. Example of the generalized infection process for n = 15 (which is not
a scheme for M(15), but which we use for demonstration purposes). Circular marks de-
pict dimensions of rectangles Pi ∈ Rec(si, ti) and P ′i ∈ Rec(s′i, t

′
i) obtained after consecu-

tive moves. In this example we have a triple (which is not a scheme for M(15) but we
use it for demonstration purpose) Q = (5, 2, 34654467) (solid line) and its modification Q′ =
(2, 5, 3(4, 1)(4, 1/2)(6, 1/2)(4, 1)(4, 1/2)(6, 1/2)(4, 1/2) (6, 1/2)(7, 1)(6, 1)) (dashed line); note that
here j0 = 1, sj0 = 5 and tj0 = 4 (shaded rectangle represents the rectangle Pj0).

We do not have any occurrences of Move 5 in Q′ and Move 4s, 6s and 7s occur in
multiples of 1/2, i.e., all xi’s are either 1/2 or 1. In Table 4.4 we show that wanting
to maximize infection time we should keep the order of half–moves as suggested in
Figure 4.2. That is, we should have Move 7s followed by 4s and finally by 6s.

m′i = 4 m′i = 6 m′i = 7

m′i−1 = 4 k + `− 2 (3k + `)/2− 15/8 (k + 3`)/2− 15/8
m′i−1 = 6 (3k + `)/2− 17/8 2k − 1 k + `− 5/2
m′i−1 = 7 (k + 3`)/2− 13/8 k + `− 5/2 2`− 1

Table 4.4
Time taken by consecutive half–Moves (m′i−1, 1/2)(m

′
i, 1/2), assuming that P ′i ∈ Rec(k, `).

Thus, for some x, y, z ∈ [0,∞), we obtain Q′′ = (s0, 2,m1 . . .mj0(7, x)(4, y)(6, z))
that takes at least as long to infect [n]2 in our generalized infection process as a scheme
Q solving M(n) does in bootstrap percolation. Denote the rectangle that we obtain
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when we apply Move (7, x) to Pj0 by Pj0+x ∈ Rec(s, t) and note that we must have
y = (n − s)/2 and z = (n − t − (n − s)/2)/3. Recall that Pj0 ∈ Rec(sj0 , tj0) with
tj0 ≤ 7 and therefore s = sj0 + 3x and t = tj0 ≤ 7. To bound the spanning time of
Q′′ from above we may start by being generous and saying that M(Pj0+x) ≤ st ≤ 7s.
We then compute the time needed to apply Move (4, y) and Move (6, z). We conclude
that the percolation time of Q′′ can be bounded from above by

st+
(n− s)

2
(t+ s+ 1) +

3

2

(n− s)
2

(n− s− 2)

2
+

(n− t− n−s
2 )

3
(2n− 1) ≤

≤ 7s+
(n− s)(s+ 8)

2
+

3(n− s)(n− s− 2)

8
+

(n+ s)(2n− 1)

6
= fn(s).

Maximizing fn(s) over 0 ≤ s ≤ n we find that its maximum is f(n+43
3 ) = 13

18n
2 +

77
18n + 1849

72 . That gives an upper bound on M(n) and therefore completes the proof
of Theorem 1.

Remark 17. We believe that M(n) is achieved using a scheme of the form
(s, 2, [1]≤1[4]∗[6]∗) where s = n/3 + O(1). However, we expect that a much more
tedious case analysis might be necessary to prove this statement.

5. Concluding remarks and further questions. In this paper we give the
asymptotic formula for the maximum percolation time in the grid [n]2 under 2-
neighbour bootstrap percolation. Our results allow us to prove the following two
theorems about the maximum time of 2-neighbour bootstrap percolation in other
related graphs.

Theorem 5.1. Let T2
n be the 2-dimensional n× n discrete torus and let MT(n)

denote the maximum percolation time in T2
n. Then MT(n) = 13n2/18 +O(n).

Sketch of Proof. To see that MT(n) ≥ 13n2/18 + O(n) consider, for n ≥
4, an (n − 2, n − 2)-perfect set A that spans the square (n − 2) × (n − 2) in time
M(n − 2) = 13n2/18 + O(n) and such that IA(n − 2, n − 2) = M(n − 2). Then the
set A ∪ {(n− 1, n− 1)} percolates T2

n in time at least M(n− 2).
For the upper bound on MT(n) it is not enough to argue that T2

n having greater
connectivity than the square n×n implies that the infection process in T2

n runs faster.
This is because there exists sets that percolateMT(n) but do not percolate the square
n × n, e.g., a diagonal minus one site. However, 2-neighbour bootstrap percolation
on T2

n can be seen as a similar “rectangle process” as described in Proposition 3.
Performing a case analysis like in the proof of Theorem 5 with a bit of extra care needed
to accommodate for the effect of “folding” it follows that MT(n) ≤ 13n2/18 +O(n).

Using an asymmetric version of Proposition 16 and the idea of fractional moves,
for α ∈ (0, 1) and n large, assuming that αn is a natural number, we can determine
the asymptotic value of M(n, αn). All we need to do is, for both P0 ∈ Rec(s0, 2) and
P0 ∈ Rec(2, s0), to follow the same reasoning as in Section 4 when we obtained the
upper bound on M(n). Constructing a set percolating in [n]× [αn] in an essentially
maximum time, and hence obtaining a corresponding lower bound on M(n, αn), is
then immediate.

Theorem 18. We have:
1. If 1

3 ≤ α ≤ 1 then M(n, αn) =
(
2α
3 + 1

18

)
n2 +O(n).

2. If 0 < α ≤ 1
3 then M(n, αn) =

(
α− α2

2

)
n2 +O(n).

Sketch of Proof. For 1
3 ≤ α ≤ 1 a construction that gives us the lower bound

on M(n, αn) first infects a roughly n
3 × 3 rectangle in time O(n), then using Move
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4
(
n
3 +O(1)

)
times extends it to a roughly n × n

3 one in time 5n2

18 + O(n), and
then finishes the infection in additional

(
2α
3 −

2
9

)
n2 +O(n) time steps using Move 6((

α
3 −

1
9

)
n+O(1)

)
times.

A construction that gives us the lower bound on M(n, αn) when 0 < α ≤ 1
3 first

infects a roughly (1− 2α)n× 3 rectangle in time O(n), and then finishes the infection
in additional

(
α− α2

2

)
n2 +O(n) time steps using Move 4 (αn+O(1)) times.

The most obvious continuation and generalization of our work is establishing the
maximum percolation time in the grid [n]d under r-neighbour bootstrap percolation,
for all values of d and r. Let us present the following partial result for r = 2.

Let T d(A) denote the time that A takes to percolate in [n]d under 2-neighbour
bootstrap percolation, so that T (A) = T 2(A). Then the maximum percolation time
in 2-neighbour bootstrap percolation in [n]d is defined as

Md(n) = max{T d(A) : 〈A〉 = [n]d},

so thatM(n) = M2(n). Together with Simon Griffiths from the Instituto Nacional de
Matemática Pura e Aplicada, Rio de Janeiro, Brazil, we proved the following theorem.

Theorem 19. For all d ≥ 1 fixed,

6d2 − 5d− 1

18
n2 +O(n) ≤Md(n) ≤ d2

2
n2 +O(n).

Sketch of Proof. For the lower bound, we generalize the construction in The-
orem 1 to all dimensions. We first show by induction that for all d ≥ 1 we can
infect a d-dimensional cuboid Cd with sides of length n × . . . × n × bn/3c in time
td(n) = (6d2 − 13d+ 7)n2/18 + O(n). Note that for d = 1 this quantity is O(n) and
for d = 2 it is 5n2/18 +O(n), agreeing with the description of Phase 3 in the proof of
the lower bound in Theorem 1. Having infected a d-dimensional cuboid of that form
we infect a (d+ 1)-dimensional one by generalizing our earlier construction (note that
Cd can be in fact seen as a (d+ 1)-dimensional cuboid with the (d+ 1)th coordinate
equal to 1): using n/3 times an equivalent of Move 4 we repetitively grow Cd by 2 in
the dth dimension and by 1 in the (d + 1)th dimension (with the i-th application of
the equivalent of Move 4 taking approximately (2(d− 1) + 1/3)n+ 3(i− 1) time steps
these sum up to (2d/3 − 7/18)n2 + O(n) steps). Thus the formula for td follows by
induction.

Finally, having infected Cd in time td(n), we finish the infection of [n]d by per-
forming 2n/9 times an equivalent of Move 6. Namely, we repetitively grow Cd by 3
in the dth direction, each such operation taking 2(d − 1)n + O(1) time steps. Thus
the lower bound on Md(n) follows.

For the upper bound we first use a generalization of Proposition 3 to all d ≥ 2
(see Lemma 2.3 in [4]). Namely, if a cuboid C in [n]d is internally spanned by a set A
then there exist some two strictly smaller cuboids in C that are internally spanned by
two disjoint subsets of A and the union of which internally spans C. Reapplying this
proposition inductively we see that the maximum percolation time in [n]d is bounded
from above by the sum of percolation times of strictly smaller and smaller cuboids
internally spanned by unions of two fully infected cuboids.

We then show that for any two fully infected cuboids C1, C2 such that 〈C1 ∪ C2〉 =
C we have that C1 ∪C2 internally spans C in time not larger than diam(C) + 1. We
prove this fact by first noticing that (unless C1 ∪ C2 = C in which case the fact is
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trivial) there must exist some v ∈ C such that dist(v, C1) = dist(v, C2) = 1. Obviously
v becomes infected at the first step of the process. We then prove by induction on
t ≥ 2 that all sites in C at distance t − 1 from v are infected after at most t steps
of the process. This implies that diam(C) + 1 is an upper bound on the time that
C1 ∪ C2 takes to percolate C. Thus we obtain an upper bound on Md(n) equal to∑d(n−1)+1
i=1 i = d2n2/2 +O(n).
Note that the lower bound on Md(n) is sharp for d = 2, i.e., it gives the right

constant 13/18. We believe that it is in fact sharp for all d ≥ 1 and this motivates
the following conjecture.

Conjecture 20 (Benevides, Griffiths, Przykucki). For all d ≥ 1 fixed,

Md(n) =
6d2 − 5d− 1

18
n2 +O(n).

Another natural question which we leave for further work is the one about the
maximum percolation time for higher infection thresholds in [n]d. However, it is well
known that percolation in [n]d for r ≥ 3 is a completely different process from the one
for d = 2. For example, for r ≥ 3, there is no description analogous to the rectangle
process given in Proposition 3. It is therefore plausible that the maximum percolation
time problem for higher infection thresholds will be completely different in nature.
For example, one can expect a jump in the value of the maximum percolation time
from Θ(n2) for r = 2 to Θ(nd) for r ≥ 3.

Question 21. What is the maximum percolation time in r-neighbour bootstrap
percolation on [n]d for r ≥ 3?

Appendix A. Analysis of small cases.
Assume that (s0, t0,m1m2 . . .mr) is a scheme for M(k, `) for k, ` ≥ 3, (k, `) 6=

(3, 3). Let A be a (k, `)-perfect set described by it and let P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈
Rec(k, `) be the sequence of rectangles associated with A. We treat a number of small
cases to exclude some, a priori possible, values for the numbers s0 and t0.

Suppose for a contradiction that P0 ∈ Rec(s, 1). Since P1 ∈ Rec(s1, t1) where
s1, t1 ≥ 3 and max{s1, t1} ≥ 4, one of the following cases must occur:

1. P1 ∈ Rec(s, 3) with s ≥ 4: since we haveM(s−1, 2) ≥ 3, by applying Move 1
to [s − 1] × [2] we see that M(s, 3) ≥ (s − 1) + 3 = s + 2. However, for
P0 ∈ Rec(s, 1) and P1 ∈ Rec(s, 3), as in the infection process defined by A,
it takes time at most s+ 1 to infect all sites in P1 since both ending sites of
the rectangle P0 must be initially infected. This contradicts the fact that at
every step i the time that A takes to percolate Pi is maximum;

2. P1 ∈ Rec(s+1, 3) with s ≥ 3: since we haveM(s, 2) ≥ 3, by applying Move 1
to [s]× [2] we see that M(s+ 1, 3) ≥ s+ 3. However, for P0 ∈ Rec(s, 1) and
P1 ∈ Rec(s + 1, 3), as in the infection process defined by A, it takes time at
most s + 2 to infect all sites of P1 (by the same argument as above). This
again contradicts the fact that A is (n, n)-perfect;

3. P1 ∈ Rec(s, 4) with s ≥ 3: since we have M(s, 2) ≥ s, by applying Move 3 to
[s]× [2] we see that M(s, 4) ≥ s+ s+ 1 = 2s+ 1. However, for P0 ∈ Rec(s, 1)
and P1 ∈ Rec(s, 4), as in the infection process defined by A, using again the
same argument it takes time at most 2s − 1 to infect all sites of P1. This
contradicts the fact that A is (n, n)-perfect.

Thus, we may assume that P0 /∈ Rec(s, 1). Analogously, we may assume that
P0 /∈ Rec(1, t) . Suppose now that P0 ∈ Rec(3, 3). Considering P1 ∈ Rec(s1, t1) up to
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symmetries one of the following cases must occur:
1. P1 ∈ Rec(6, 3): by applying Move 7 it takes time 5 to infect P1 after P0 is

fully infected. This procedure takes time at most M(3) + 5 = 9 to infect P1.
However, by applying Move 1 to [5]× [2] we see that M(6, 3) ≥M(5, 2) + 5 =
6 + 5 = 11; this contradicts the fact that A is (n, n)-perfect;

2. P1 ∈ Rec(5, 4): by applying Move 4 it takes time 7 to infect P1 after P0 is
fully infected. This procedure takes time at most M(3) + 7 = 11 to infect P1.
However, by applying Move 3 to [5]× [2] we see that M(5, 4) ≥M(5, 2) + 6 =
6 + 6 = 12; this contradicts the fact that A is (n, n)-perfect;

3. P1 ∈ Rec(4, 4): by applying Move 1 it takes time 3 to infect P1 after P0 is
fully infected. This procedure takes time at most M(3) + 3 = 7 to infect P1.
However, by applying Move 3 to [4]× [2] we see thatM(4) ≥M(4, 2)+5 = 9;
this contradicts the fact that A is (n, n)-perfect;

4. P1 ∈ Rec(5, 3): by applying Move 2 it takes time 4 to infect P1 after P0 is
fully infected. This procedure takes time at most M(3) + 4 = 8 to infect P1.
By applying Move 1 to [4]× [2] we also take time M(4, 2) + 4 = 8. Although
this does not contradict the (n, n)-perfectness of A, we can replace it by an
(n, n)-perfect set A′ whose infection process starts with a P ′0 ∈ Rec(4, 2) and
expands to P1, so that A′ takes the same time to percolate in [n]2 as A.

Thus, we may assume that P0 /∈ Rec(3, 3) and we have P0 ∈ Rec(s, 2) ∪Rec(2, s)
for some s ≥ 3.
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