
European Journal of Combinatorics 48 (2015) 88–99

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

The maximum time of 2-neighbour bootstrap
percolation: Algorithmic aspects✩

Fabrício Benevides a, Victor Campos b, Mitre C. Dourado c,
Rudini M. Sampaio b, Ana Silva a

a Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
b Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
c Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o

Article history:
Available online 5 March 2015

a b s t r a c t

In 2-neighbourhood bootstrap percolation on a graph G, an infec-
tion spreads according to the following deterministic rule: infected
vertices of G remain infected forever and in consecutive rounds
healthy verticeswith at least 2 already infected neighbours become
infected. Percolation occurs if eventually every vertex is infected.
In this paper, we are interested to calculate the maximal time t(G)
the process can take, in terms of the number of times the interval
function is applied, to eventually infect the entire vertex set. We
prove that the problem of deciding if t(G) ≥ k is NP-complete for:
(a) fixed k ≥ 4; (b) bipartite graphs and fixed k ≥ 7; and (c) pla-
nar graphs. Moreover, we obtain linear and polynomial time algo-
rithms for trees and chordal graphs, respectively.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a problem inwhich an infection spreads over the vertices of a connected simple graph
G following a deterministic spreading rule in such a way that an infected vertex will remain infected
forever. Given a set S ⊆ V (G) of initially infected vertices, we build a sequence S0 = S, S1, S2, . . . in
which Si+1 is obtained from Si using such a spreading rule.

✩ This research was supported by Capes (STIC-AmSud 040/2012) and CNPq (Universal 478744/2013-7).
E-mail addresses: fabricio@mat.ufc.br (F. Benevides), campos@lia.ufc.br (V. Campos), mitre@dcc.ufrj.br (M.C. Dourado),

rudini@lia.ufc.br (R.M. Sampaio), anasilva@mat.ufc.br (A. Silva).

http://dx.doi.org/10.1016/j.ejc.2015.02.012
0195-6698/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejc.2015.02.012
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2015.02.012&domain=pdf
mailto:fabricio@mat.ufc.br
mailto:campos@lia.ufc.br
mailto:mitre@dcc.ufrj.br
mailto:rudini@lia.ufc.br
mailto:anasilva@mat.ufc.br
http://dx.doi.org/10.1016/j.ejc.2015.02.012

F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99 89

Under r-neighbour bootstrap percolation on a graph G, the spreading rule is a threshold rule in
which Si+1 is obtained from Si by adding to it the vertices ofGwhich have at least r neighbours in Si.We
say that a set S0 percolatesG (or that S0 is a percolating set ofG) if eventually every vertex ofG becomes
infected, that is, there exists a t such that St = V (G). In that case, we define tr(S) as the minimum t
such that St = V (G). And define, the percolation time of G as tr(G) = max{tr(S) : S percolates G}. In
this paper, we shall focus on the case where r = 2 and in such a case we omit the subscript of the
functions tr(S) and tr(G).

Bootstrap percolation was introduced by Chalupa, Leath and Reich [14] as a model for certain
interacting particle systems in physics. Since then it has found applications in clustering phenomena,
sandpiles [23], and many other areas of statistical physics, as well as in neural networks [1] and
computer science [19].

There are two broad classes of questions one can ask about bootstrap percolation. The first, and
the most extensively studied, is what happens when the initial configuration S0 is chosen randomly
under some probability distribution? One would like to know how likely percolation is to occur, and
if it does occur, how long it takes.

The answer to the first of these questions is nowwell understood for various graphs. An interesting
case is the one of the lattice graph [n]d, in which d is fixed and n tends to infinity, since the probability
of percolation under the r-neighbour model displays a sharp threshold between no percolation
with high probability and percolation with high probability. The existence of thresholds in the
strong sense just described first appeared in papers by Holroyd, Balogh, Bollobás, Duminil-Copin and
Morris [25,5,4]. Sharp thresholds have also been proved for the hypercube (Balogh and Bollobás [3],
and Balogh, Bollobás and Morris [6]). There are also very recent results due to Bollobás, Holmgren,
Smith and Uzzell [10], about the time percolation takes on the discrete torus Td

n = (Z/nZ)d for a
randomly chosen set S0.

The second broad class of questions is the one of extremal questions. For example, what is the
smallest or largest size of a percolating set with a given property? The size of the smallest percolating
set in the d-dimensional grid [n]d was studied by Pete and a summary can be found in [7]. Morris [28]
and Riedl [30] studied the maximum size of minimal percolating sets on the square grid [n]2 and
the hypercube {0, 1}d, respectively, answering a question posed by Bollobás. However, the problem
of finding the smallest percolating set is NP-hard even on subgraphs of the square grid [2] and it
is APX-hard even for bipartite graphs with maximum degree four [17]. Moreover, it is hard [15] to
approximate within a ratio O(2log1−ε n), for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Another type of question is: What is the minimum or maximum time that percolation can take,
given that S0 satisfies certain properties? Recently, Przykucki [29] determined the precise value of the
maximumpercolation time on the hypercube 2[n] as a function of n, and Benevides and Przykucki [9,8]
have similar results for the square grid [n]2, also answering a question posed by Bollobás. In particular,
they have a polynomial time dynamic programming algorithm to compute the maximum percolation
time on rectangular grids [9].

In this paper, we investigate the computational complexity of t(G), motivated by these recent
results on the maximum percolation time. Here, we consider the decision version of the maximum
time percolation problem, as stated below.
percolation time
Input: A graph G and an integer k.
Question: Is t(G) ≥ k?

In Section 2, we prove that percolation time is NP-complete even when the input is restricted to
certain cases. More precisely, we prove it is NP-complete for: general graphs even if k ≥ 4 is fixed,
that is, k is not part of the input; bipartite graphs and any fixed k ≥ 7; and planar graphs and a given
k, that is, k is part of the input. In Section 3, we provide polynomial time algorithms for general graphs
when k ≤ 2 and for chordal graphs, and a linear time algorithm for trees.

1.1. Related works and some notation

It is interesting to notice that infection problems appear in the literature under many different
names and were studied by researches of various fields. A recent source on related topics is [16]. The

90 F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99

Fig. 1. Gadget for clause Ci .

particular case in which r = 2 in r-neighbourhood bootstrap percolation is also a particular case of a
infection problem related to convexities in graph, which are also of our interest.

A finite convexity space [26,31] is a pair (V , C) consisting of a finite ground set V and a set C of
subsets of V satisfying ∅, V ∈ C and if C1, C2 ∈ C, then C1 ∩ C2 ∈ C. The members of C are called
C-convex sets and the convex hull of a set S is the minimum convex set H(S) ∈ C containing S.

A convexity space (V , C) is an interval convexity [11] if there is a so-called interval function I :
V
2

→ 2V such that a subset C of V belongs to C if and only if I({x, y}) ⊆ C for every two distinct

elements x and y of C . With no risk of confusion, for any S ⊆ V , we also denote by I(S) the union of S
with∪x,y∈S I({x, y}). In interval convexities, the convex hull of a set S can be computed by exhaustively
applying the corresponding interval function until obtaining a convex set.

Given a vertex v of a graph G, N(v) stands for the set of neighbours of v in G; for a nonnegative
integer i, Ni(v) denotes the set of vertices at distance i of v; and N(v) the set of vertices at distance at
least two from v, that is, N(v) = V (G) \ (N(v) ∪ {u}).

The most studied graph convexities defined by interval functions are those in which I({x, y}) is
the union of paths between x and y with some particular property. Some common examples are
the P3-convexity [21], geodetic convexity [22] and monophonic convexity [20]. We observe that the
spreading rule in 2-neighbours bootstrap percolation is equivalent to Si+1 = I(Si) where I is the
interval function which defines the P3-convexity: I(S) contains S and every vertex belonging to some
path of 3 vertices whose extreme vertices are in S. It will be convenient to denote Si by I i(S), where
I i(S) is obtained by applying i times the operation I .

For these reasons, sometimeswe call a percolating set by hull set. Related to the geodetic convexity,
there exists the geodetic iteration number of a graph [13,24], which is similar to the percolation time.

2. NP-complete cases

In the first case we make a reduction from the 3-SAT problem.

Theorem 2.1. percolation time is NP-complete for any fixed k ≥ 4.
Proof. Given m clauses C = {C1, . . . , Cm} on variables X = {x1, . . . , xn} as an instance of 3-SAT, we
denote the three literals of Ci by ℓi,1, ℓi,2 and ℓi,3. We construct a graph G as follows.
Construction 1. For each clause Ci of C, add to G a gadget as the one of Fig. 1. Then, for each pair of
literals ℓi,a, ℓj,b such that one is the negation of the other, add a vertex y(i,a),(j,b) adjacent to wi,a and
wj,b. Let Y be the set of all vertices created this way. Finally, add a vertex z adjacent to all vertices in Y
and a pendant vertex z ′ adjacent to only z. Denote the sets {ui,1, ui,2, ui,3} and {wi,1, wi,2, wi,3} by Ui
andWi, respectively. LetU = ∪1≤i≤m Ui,W = ∪1≤i≤m Wi and L be the set of vertices of degree one inG.

We first consider the case k = 4. We show that C is satisfiable if and only if G contains a hull set
with percolation time at least 4.

F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99 91

a b

Fig. 2. Bipartite gadget for each clause Ci .

Suppose that C has a truth assignment. For each clause Ci, let ki denote an integer in {1, 2, 3} such
that ℓi,ki is true. Let S

′
= {ui,ki : 1 ≤ i ≤ m} and S = S ′

∪ L. We obtain I1(S) from S by adding the
vertices {wi,ki : 1 ≤ i ≤ m}; I2(S) from I1(S) by adding the remaining vertices in W ; I3(S) from I2(S)
by adding the vertices in Y together with the remaining vertices in U; and, I4(S) from I3(S) by adding
the vertex z. Therefore, G has percolation time at least 4.

Now, suppose that t(G) ≥ 4 and let S be any hull set of G with t(S) ≥ 4. Note that L ⊆ S; also for
any clause Ci, we have Ui ∩ S ≠ ∅ because |N(ui,j) − Ui| ≤ 1, for all i, j. This implies that W ⊆ I2(S),
U ∪ Y ⊆ I3(S) and z ∈ I4(S). Furthermore, if Y ∩ I2(S) ≠ ∅ then z ∈ I3 and t(S) ≤ 3, a contradiction.
Then Y ∩ I2(S) = ∅, which means that no pair {ui,a, ui,b}, where ℓi,a is the negation of ℓj,b, is in S. This
means that assigning true to each ℓi,j for which ui,j ∈ S gives us an assignment that satisfies C.

For values k > 4, it suffices to subdivide the edge zz ′ into a path P of length k − 4, appending a
new leaf vertex to each vertex in P . �

Theorem 2.2. percolation time is NP-complete for bipartite graphs and any fixed k ≥ 7.

Proof. We describe a polynomial reduction from 4-SAT. Let C be an instance of 4-SATwithm clauses
C1, . . . , Cm on X = {x1, . . . , xn}. We denote the four literals of a clause Ci of C by ℓi,1, ℓi,2, ℓi,3 and
ℓi,4. We construct a graph G similar to the one obtained by Construction 1, using the gadget of Fig. 2
(a) instead of Fig. 1. Further, we add two vertices z ′′ and z ′′′ and the edges zz ′′ and z ′′z ′′′. Also add a
pendant vertex adjacent to only z ′′ and a pendant vertex adjacent to only z ′′′. Denote by Ai the vertices
of the clause gadget associated to clause Ci, for 1 ≤ i ≤ m. First consider the case k = 7. We show
that C is satisfiable if and only if G contains a hull set with percolation time at least 7.

Suppose thatC has a truth assignment. For each clause Ci, let ki denote an integer in {1, 2, 3, 4} such
that ℓi,ki is true. Let S

′
= {ui,ki : 1 ≤ i ≤ m} and S = S ′

∪ L. Fig. 2(a) and (b) show the two possibilities
for the percolation times of the vertices in the gadget clauses. From this observation, it is easy to see
that the vertices in Y have percolation time either 4 or 5 (recall thatC is a truth assignment). Therefore
the vertex z has percolation time at least 5, the vertex z ′′ has percolation time at least 6 and the vertex
z ′′′ has percolation time at least 7.

Now, suppose that t(G) ≥ 7 and let S be any hull set of G with t(S) ≥ 7. Note that L ⊆ S; also for
any clause Ci, we have Ui ∩ S ≠ ∅ because |N(ui,j) − Ui| ≤ 1, for all i, j. This implies that W ⊆ I4(S),
U ⊆ I6(S), Y ⊆ I5(S), z ∈ I6(S), z ′′

∈ I7(S) and z ′′′
∈ I8(S). Furthermore, if Y ∩ I3(S) ≠ ∅ then

z ∈ I4(S), z ′′
∈ I5(S), z ′′′

∈ I6(S) and then t(S) ≤ 6, a contradiction. Then Y ∩ I2(S) = ∅. This implies
that no pair {ui,a, ui,b}, where ℓi,a is the negation of ℓj,b, is in S. This means that assigning true to each
ℓi,j for which ui,j ∈ S gives us an assignment that satisfies C.

For values k > 7, it suffices to subdivide the edge z ′′z ′′′ into a path P of length k − 7, appending a
new leaf vertex to each vertex in P . �

92 F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99

Fig. 3. Planar bipartite gadget for clause Ci .

To prove that the problem is also NP-complete for planar graphs, we make a reduction from
a restricted 3-SAT, the Planar 3-SAT, which is also NP-complete [27]. The construction is similar,
however, in order to maintain the planarity we need to increase the time of percolation of the so-
called ‘‘collector vertices’’, which is why our proof does not work when the time is fixed.

Theorem 2.3. Percolation time is NP-complete even when restricted to planar graphs.

We use the following definition. If C is an instance of 3-SAT, then the underlying graph of C is
a bipartite graph which has one vertex for each variable and one vertex for each clause and has an
edge between a variable vertex and a clause vertex if and only if the corresponding clause contains a
literal with the corresponding variable. If the underlying graph ofC is planar, we say thatC is a planar
formula. We prove a reduction from Planar 3-SAT, which is known to be NP-complete [27], even if
each variable appears in at most three clauses and every literal of the form x, where x is a variable,
appears in exactly one clause (see the proof of Theorem 2a in [18]).
Restricted Planar 3-SAT
Input: A 3-SAT planar formula on variables of a set X such that each variable appears in at most three
clauses and every literal of the form x, where x ∈ X , appears in exactly one clause.
Question: Is there a truth assignment to X that satisfies all clauses of C?

Proof. Let C be an instance of Planar 3-SATwith m clauses C1, . . . , Cm on X = {x1, . . . , xn}.
We construct a graph H similar to the one obtained by Construction 1, using the gadget of Fig. 3

instead of Fig. 1. We claim that H is planar. To prove this claim, consider the underlying graph of C
embedded into the plane. We show how to modify this embedding turning it into a graph isomorphic
to H . For each clause vertex ci, replace ci by a copy of the gadget in Fig. 3.

Redraw each one of the three edges incident to ci into the vertices in Wi without crossing the
dashed region of the gadget, one edge for each vertex in Wi. If necessary, rename the indices in the

F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99 93

clause gadget so that wi,k is adjacent to a variable vertex used in the literal ℓi,k. Now, for each variable
vertex vj corresponding to variable xj, contract the edge between vj andwi,k such that ℓi,k = xj. Finally,
for each edge between vertices wi,a and wj,b, subdivide this edge once and name this created vertex
y(i,a)(j,b). The obtained graph is isomorphic to H by construction and all operations described can be
made while maintaining planarity. This proves that H is planar.

From this planar drawing ofH , let F be the set of faces ofH that are incident to at least one vertex in
Y , i.e., faces which are not bounded exclusively by clause gadget vertices. Let B be the bipartite graph
with vertex set F ∪ Y and an edge between f ∈ F and y ∈ Y precisely when y is contained in the face
f . Consider a spanning tree T ′ of B rooted at some vertex f ′

∈ F . Let T be obtained from T ′ by deleting
from T all leaves in F . For f ∈ F ∩ V (T), let Y (f) be the set of children of f in T . Note that since every
vertex y ∈ Y is contained in exactly two faces, then y has at most one child in T . Recursively label the
vertices in T as follows.

(1) If y ∈ Y is a leaf in T , then let t(y) = 3.
(2) If f ∈ F ∩ V (T), then let t(f) = 1 + max{t(y) | y ∈ Y (f)}.
(3) If y ∈ Y has a child f in T , then let t(y) = 2 + t(f).

We now build a planar graph G from H as follows.

(1) For each y ∈ Y such that t(y) > 3, subdivide each edge incident to y to include t(y) − 3 new
vertices each. Let P(y) denote the set of subdivision vertices created this way for y.

(2) For each face f ∈ F ∩ V (T), add a vertex vf in f . Then, for each y ∈ Y (f), add an edge between y
and vf and then subdivide this edge to include t(f) − t(y) − 1 new vertices. Let P(f) denote the
set of subdivision vertices created this way for f .

(3) For each pair f , y such that f is a child of y in T , add two vertices adjacent to both y and vf . Let
N(f , y) denote the set of these two vertices created for the pair f , y.

(4) Add one pendant vertex adjacent to each vertex created in the previous steps.

Let L be the set of all degree one vertices of G, let S be any hull set of G and note that L ⊆ S.
For any clause Ci, we have Ui ∩ S ≠ ∅ as V (G) \ Ui is convex. This implies that Wi ⊆ I2(S) and
therefore Wi ∪ Ui ⊆ I3(S). To analyse the remaining vertices, consider the sets defined from vertices
in T recursively as follows.

(1) If y = y(i,a),(j,b) ∈ Y is a leaf in T , then let Q (y) = {ui,a, uj,b} and R(y) = {y}.
(2) If f ∈ F ∩ V (T), then let Q (f) = ∪y∈Y (f) Q (y) and R(f) = {vf } ∪ P(f) ∪y∈Y (f) R(y).
(3) If y = y(i,a),(j,b) ∈ Y has a child f in T , then let Q (y) = {ui,a, uj,b} ∪ Q (f) and R(y) = {y} ∪ P(y) ∪

N(f , y) ∪ R(f).

We say that a vertex in v ∈ V (T) represents the vertices in Q (v) and covers the vertices in R(v).
If S contains at most one vertex in the set {ui,a, uj,b} for ui,a, uj,b ∈ Q (v) such that ℓi,a is the negation
of ℓj,b, then we say that v is well represented. Note that f ′ covers all vertices with degree at least two
that are not clause vertices.

Claim 2.4. For every v ∈ V (T), R(v) ⊆ I t(v)(S). Moreover, if v = y ∈ Y and y ∉ I t(y)−1(S) or v = f ∈ F
and vf ∉ I t(f)−1(S), then v is well represented.

Proof. We prove this by induction on the height of the subtree rooted at v in T . If y = y(i,a),(j,b) ∈ Y is
a leaf in T , then t(y) = 3. Since Wi ∪ Wj ⊆ I2(S), then y ∈ I3(S). If S contains both ui,a and uj,b, then
y ∈ I2(S). Therefore, if y ∉ I2(S), then either ui,a or uj,b is not in S.

If f ∈ F ∩ V (T), then, by the induction hypothesis, R(y) ⊆ I t(y)(S) for every y ∈ Y (f). Therefore,
by following the paths with internal vertices in P(f), we have R(f) ⊆ I t(f). If y ∈ I t(y)−1(S) for any
y ∈ Y (f), then by following the path from y to vf with internal vertices in P(f), we get vf ∈ I t(f)−1(S).
Therefore, if vf ∉ I t(f)−1(S), then all vertices in Y (f) are well represented which implies f is well
represented.

If y = y(i,a),(j,b) ∈ Y has a child f in T , then, by the induction hypothesis, R(f) ⊆ I t(f)(S). This fact
together with the fact that Wi ∪ Wj ⊆ I2(S) implies R(y) ⊆ I t(y)(S). If either S contains both ui,a and
uj,b or vf ∈ I t(f)−1(S), then y ∈ I t(y)−1(S). Therefore, if y ∉ I t(y)−1(S), then either ui,a or uj,b is not in S
and f is well represented which implies y is well represented. �

94 F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99

From Claim 2.4, we know that G has percolation time at most t(f ′). If G has percolation time t(f ′),
then let S be a hull set that achieves this time. For any ui,k ∈ S ∩ U fix a variable in X so that ℓi,k is
true. From Claim 2.4, f ′ is well represented and this corresponds to a truth assignment of C for any
value given to the unfixed variables. Now, consider C has a truth assignment. Let S ′ be obtained by
choosing precisely one vertex from ui,k ∈ Ui corresponding to a true literal ℓi,k in Ci, for 1 ≤ i ≤ m
and let S = S ′

∪ L. Since f ′ is well represented and by an induction similar to the one in Claim 2.4, we
have that S is a hull set of Gwith percolation time t(f ′). �

The following questions remain open:

• Is NP-Complete the problem of deciding if t(G) ≥ 3?
• Is NP-Complete the problem of deciding if t(G) ≥ 6 on bipartite graphs?
• Is NP-hard the problem of determining t(G) on planar bipartite graphs?

3. Polynomial time cases

In this section we present polynomial time algorithms for computing t(G) for chordal graphs and
trees, and deciding if t(G) ≥ t , for t ∈ {1, 2}, for general graphs. It is clear that t(G) ≥ 1 if and only if
G has some vertex of degree at least 2. The next result characterizes the graphs with t(G) ≥ 2.

Theorem 3.1. Let G be a graph. Then t(G) ≥ 2 if and only if there exist u ∈ V (G) and v ∈ N(u) such that
N(u) ∪ {v} is a hull set.

Proof. Let u ∈ V (G) and v ∈ N(u) such that N(u) ∪ {v} is a hull set. Since u ∉ I(S), it holds t(G) ≥ 2.
Now, let S be a hull set of G such that t(S) ≥ 2 and let u ∈ I2(S) \ I1(S). Hence, S contains at most one
neighbour v of u. If S contains no neighbour of u, take any v ∈ N(u) and add it to S. Then, S is a subset
of N(u) ∪ {v}, which implies that N(u) ∪ {v} is a hull set. �

Nowwe consider chordal graphs. The following result gives a crucial tool for the determination of
t(G) in polynomial time for this graph class.

Theorem 3.2 ([12]). If G is a 2-connected chordal graph, then {x, y} is a hull set of G, for all x, y ∈ V (G)
with distance at most 2.

Let G be a connected graph and v ∈ V (G). Denote by G − v the graph obtained by removing v
from G. Recall that v is a cut vertex of G if G − v is disconnected, and that a block of G is a maximal
2-connected subgraph of G. A block having at most one cut vertex is a leaf block of G. For each vertex
u and each block B containing u, let Gu,B be the connected component of the subgraph of G induced by
(V (G) \V (B))∪{u} containing u, GB,u be the connected component of G−u containing B−u, and Gu

B,u

the subgraph of G induced by V (GB,u) ∪ {u}. Denote also Sv,B = S ∩ V (Gv,B) and Sv,B = S \ V (Gv,B).
Given sets S, T and a positive integer k, denote by perc(S, k, T) theminimum i such that |I i(S)∩T | ≥ k,
i.e., perc(S, k, T) is the minimum number of applications of the interval function on S to percolate at
least k vertices of T . These definitions allow us to define some useful variations of percolation time.

• t(u) = max{perc(S, 1, {u}) : S is hull set of G};
• t(G) = max{t(u) : u ∈ V (G)};
• t(u, B) as the maximum time a hull set of Gu,B percolates u, i.e., t(u, B) is t(u) on the graph Gu,B;
• t1(B, u) as the maximum time a set S of GB,u percolates one neighbour of u and S ∪ {u} is a hull set

of Gu
B,u; and

• t2(B, u) = max{perc(S, 2,N(u)) : S is hull set of GB,u}.

The following equation shows how to express t(u) in terms of t1(B, u) and t2(B, u). Let B1, . . . , Bq
be all blocks containing vertex u.

t(u) =

0, if d(u) ≤ 1,
1 + t2(B1, u), if d(u) ≥ 2 and q = 1,
1 + min{t1, t2},where t1 is the second minimum t1(Bj, u)
and t2 is the minimum t2(Bj, u), for all j ∈ [q], if q ≥ 2.

(1)

F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99 95

The next lemma contains a characterization of t1(B, u).

Lemma 3.3. Let G be a graph, u a cut vertex of G, and B a block of G containing u. Then t1(B, u) =

max{s1, s2}, where s1 = max{perc(S, 1,N(u)) : S is a hull set of GB,u} and s2 = max{t(v, B) : v ∈ N(u)
for which there exists a set S ⊂ V (GB,u) such that v ∈ S, S is a proper convex set of Gu

B,u, and S ∪ {u} is a
hull set of Gu

B,u}.

Proof. Note that every set S considered in the choice of s1 is a hull set of GB,u. Since V (Gu
B,u) =

V (GB,u) ∪ {u}, S ∪ {u} is a hull set of Gu
B,u. And that every set S considered in the choice of s2 is a

proper convex set of Gu
B,u containing exactly one vertex of N(u) such that S ∪ {u} is a hull set of Gu

B,u.
In both cases, the choice is a subset S ⊆ V (GB,u) which percolates a neighbour of u such that S ∪ {u}
is a hull set of Gu

B,u, which agrees with the definition of t1(B, u).
Then, it remains to show that the set S ′ which matches t1(B, u) is ever recovered by the maximum

between the choices of s1 and s2. If S ′ is a hull set of GB,u, then S ′ is considered in the choice of s1.
Otherwise, since S ′ percolates at least one neighbour of u, H(S ′) contains exactly one vertex v of N(u).
Define S ′′

= S ′
∪ {v}. Since S ′

∪ {u} is a hull set of Gu
B,u, S

′′
∪ {u} is also a hull set of Gu

B,u containing v

and, hence, S ′′ is considered in the choice of s2 and in this case the set S ′ is equal to S ′′
\ N(u). �

Denote by PG the set of pendant vertices of the graph G and by CB the set of cut vertices of a block B.
Given two hull sets S and S ′, we say that S ≼B S ′ if perc(S ′, 1, {v}) ≥ perc(S, 1, {v}), for every v ∈ V (B).
Moreover, if perc(S ′, 1, {u}) > perc(S, 1, {u}), for at least one vertex u ∈ V (B), then we say that
S ≺B S ′.

We can extract almost all information about the percolation times of the vertices ofV (B) classifying
the vertices of (V (B)∩S)∪CB in five classes.Wewill see that in some situations it is better toworkwith
this subset of vertices than with S itself. These classes are represented by the sets Bi(S), for 0 ≤ i ≤ 4,
defined below.

• B0(S) = H(PG) ∩ V (B);
• B1(S) is the subset of V (B) contained in Ik(S) \ B0(S), for the minimum k, such that B0(S) ∪ B1(S)

is a hull set of B.
• B2(S) = {v ∈ CB : Sv,B is a proper convex set of Gv,B containing no vertex of N[v]}.
• B3(S) = {v ∈ CB : Sv,B is a proper convex set of Gv,B containing a neighbour of v};
• B4(S) contains the remaining vertices of CB.

Let v ∈ B2(S) ∪ B3(S). Observe that perc(S, 1, {u}) > perc(S, 1, {v}) for every vertex u ∈

V (Gv,B) \ (S ∪ {v}). Moreover, if v ∈ B3(S) and Sv is a proper convex of Gv,B containing a neighbour
of v, the set S ′

= (S \ Sv,B) ∪ Sv satisfies perc(S, 1, {w}) = perc(S ′, 1, {w}), for every w ∈ V (B). An
analogue observation can be done for v ∈ B2(S) and a proper convex set not containing a neighbour
of v. This means that the sets Bi(S), for 1 ≤ i ≤ 4, can represent a great number of hull sets of G and
the percolation time of the vertices of B can be determined without knowing the vertices of Sv,B, for
v ∈ B2(S) ∪ B3(S).

Given two hull sets S and S ′ we say that S ′ is obtained from S by moving v from Bi to Bj if Bi(S ′) =

Bi(S) \ {v}, Bj(S ′) = Bj(S) ∪ {v}, and Bk(S ′) = Bk(S) for k ∈ [4] \ {i, j}. In fact, B0(S) = B0(S ′) for any
two hull sets S and S ′ of G. The following lemma gives a characterization of B0(S).

Lemma 3.4. Let G be a graph and B a block of G such that V (B) ⊈ H(PG). Then H(PG)∩V (B) = {v ∈ CB:
there is not a proper convex set S of Gv,B such that S ∪ {v} is a hull set of Gv,B}.

Proof. By Theorem 3.2, every pair of vertices of H(PG) ∩ V (B) are at distance at least 3. Then
H(PG)∩V (B) ⊆ CB. Let v ∈ H(PG)∩V (B). It is clear that v ∈ H(V (Gv,B)∩PG). Suppose by contradiction
that Gv,B contains a proper convex set S such that S ∪ {v} is a hull set of Gv,B. This means that v ∉ S.
Which implies that some vertex of V (Gv,B) ∩ PG is not in S. Since every hull set of Gv,B contains
V (Gv,B) ∩ PG, we have that S ∪ {v} is not a hull set of Gv,B, a contradiction.

Conversely, let v ∈ CB such that Gv,B has no proper convex set S for which S ∪ {v} is a hull set of
Gv,B. Suppose by contradiction that v ∉ H(PG ∩ V (Gv,B)) = F . Then F is a proper convex set of Gv,B,
because v ∈ V (Gv,B). Now, we can add to F vertices of V (Gv,B) \ {v}, one per time, until to obtain a

96 F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99

maximal proper convex set S. This set is always found because the initial set F is a proper convex set of
Gv,B and we add a vertex w ≠ v to the current F only if F ∪ {w} is also a convex set. Then S is a proper
subset of V (Gv,B) because it does not contain v. Then S ∪ {v} is a hull set of Gv,B, a contradiction. �

The following lemma says that if we replace Sv,B by S ′
⊆ V (Gv,B) in a hull set containing Sv,B, for

v ∈ CB, obtaining a new hull set such that the percolation time of v increases, then the percolation
time of the other vertices of B do not decrease under this new hull set.

Lemma 3.5. Let G be a graph, B a block of G, and S and S ′ be hull sets of G such that S ′ is obtained by
moving v from Bi to Bj, for i ∈ [4] and j ∈ [4] \ {i}. If perc(S ′, 1, {v}) > perc(S, 1, {v}), then S ≺B S ′.

Proof. Denote t = perc(S, 1, {v}). Let u ∈ V (B) \ {v}. First, consider perc(S, 1, {u}) ≤ t . In this case,
when v is percolated by S ′, u is already percolated, then perc(S ′, 1, {u}) = perc(S, 1, {u}).

Now, consider perc(S, 1, {u}) > t . We prove by induction on k = perc(S, 1, {u}) − t . If k = 1 and
at time t of the percolation of S, the vertex u has only two neighbours percolated, being v one of them,
we have that perc(S ′, 1, {u}) > t +1, otherwise perc(S ′, 1, {u}) = perc(S, 1, {u}) = t +1. Concluding
the proof of the basis.

Next, consider perc(S, 1, {u}) − t = k + 1 and suppose that for every vertex w ∈ V (B) such that
perc(S, 1, {w})− t = k′, for 1 ≤ k′

≤ k, it holds perc(S ′, 1, {w}) ≥ perc(S, 1, {w}). This means that at
time k − 1 of the percolation of S, u has at most 1 percolated neighbour. By the induction hypothesis,
in the percolation of S ′, u has at most one percolated neighbour. Then perc(S ′, 1, {u}) ≥ k + 1 =

perc(S, 1, {u}). �

The following lemma and Theorem 3.2 guarantee that, in a chordal graph, the maximum
percolation times can be obtained considering only sets B1 with at most two vertices. The following
lemmaalso guarantees that the percolation timenever decreases if a vertex ismoved fromB3∪B4 toB2.

Lemma 3.6. Let G be a graph, B a block of G, and S a hull set of S.
(a) If perc(S, 1, {u}) = max{perc(S ′, 1, {u}) : S ′ is a hull set of G}, for some u ∈ V (B), then there is a

hull set S ′′ satisfying perc(S ′′, 1, {u}) = perc(S, 1, {u}), such that, B0(S ′′) ∪ B1(S ′′) \ {v} is not a hull
set of B, for every v ∈ B1(S ′′).

(b) If some vertex v ∈ B3(S) ∪ B4(S) can be moved to B2(S), then the set S ′ formed by this movement
satisfies S ≼B S ′.

Proof. (a) If B0(S) ∪ B1(S) \ {v} is not a hull set of B, for every v ∈ B1(S), we are done. Then, suppose
the contrary and let v ∈ B1(S) such that B0(S) ∪ B1(S) \ {v} is a hull set of B. By Lemma 3.4, there
exists a proper convex set of Gv,B containing a neighbour of v. Then we can move v to B3 forming a
hull set S ′. Since perc(S, 1, {v}) ≥ perc(S ′, 1, {v}), by Lemma 3.5, S ≼B S ′. Next, set S equal to S ′ and
repeat this procedure until there is no more vertices like v in B1(S).

(b) Let v ∈ B3(S) ∪ B4(S) for which there exists a proper convex S set Gv,B containing no vertex of
N[v] such that S ∪ {v} is a hull set of Gv,B, i.e., v can be moved to B2(S). Let S ′ be the hull set formed
by moving v to B2. Denote t = perc(SGv,B , 2,N(v)). It is clear that perc(S, 1, {v}) ≤ t + 1. However,
since perc(S ′, 1, {w}) > perc(S ′, 1, {v}), for every w ∈ V (Gv,B) \ (S ∪ {v}), perc(S ′, 1, {v}) = t + 1.
Then, by Lemma 3.5, S ≼B S ′. �

Now, we present an algorithm that, given a set B1 such that B0(S ′) ∪ B1(S ′) \ {v} is not a hull set
of B, for every v ∈ B1(S ′), finds the hull set S with B1(S) = B1 maximizing perc(S, 1, {u}), for every
u ∈ V (B). The following two conditions are useful in this algorithm. They consider a hull set S and a
block B of the graph.

Condition 1. min{t1(B′, v) : B′
≠ B} > perc(Sv,B, 1,N(v)).

Condition 2. perc(Sv,B, 2,N(v)) > perc(Sv,B, 1,N(v)).

Algorithm 1.
Input: a chordal graph G, a block B, and a subset B1 ⊆ V (B) such that B0 ∪ B1 is a hull set of B and

B0 ∪ B1 \ {u} is not a hull set of B, for every u ∈ B1.

F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99 97

Define B2 as the subset of vertices v ∈ CB \ (B0 ∪ B1) for which there exists a proper convex set in
Gv,B containing no vertex of N[v].

Initialize B4 as an empty set and B3 as the remaining vertices of CB.
While there is a vertex in B3 satisfying Conditions 1 and 2 for B and the current hull set S,move to

B4 the vertex v satisfying such conditions and minimizing perc(Sv,B, 1,N(v)).
end

The correctness of Algorithm 1 is presented in the following theorem.

Theorem 3.7. Let S be the set obtained by Algorithm 1 applied on a chordal graph G, a block B of G, and a
subset B1 ⊆ V (B) such that B0(S)∪B1 is a hull set of B and B0(S)∪B1 \ {u}, for every u ∈ B1, is not a hull
set of B. Then there is no hull set S ′ of G with B1(S ′) = B1 such that perc(S ′, 1, {v}) > perc(S, 1, {v}),
for some v ∈ V (B).

Proof. Weprove by induction on the percolation time of the vertices ofV (B). It holds perc(S, 1, {u}) =

0, for every u ∈ S∩V (B). Let S ′ be any hull set of Gwith B1(S ′) = B1(S). By the definitions of the Bi(S ′)
sets, it is easy to see that S ′

∩ V (B) = B1(S ′). Then, S ∩ V (B) = S ′
∩ V (B) and perc(S ′, 1, {u}) = 0, for

every u ∈ S ∩ V (B). Completing the proof of the basis.
Now, let k be a nonnegative integer. Suppose that for every v ∈ V (B) such that perc(S, 1, {v}) ≤ k,

there is no hull set S ′ with B1(S ′) = B1(S) satisfying perc(S ′, 1, {v}) > perc(S, 1, {v}).
Claim 1. If v ∈ B4(S), then perc(Sv,B, 2,N(v)) > perc(Sv,B, 1,N(v)) and min{t1(B′, v) : B′

≠ B} >

perc(Sv,B, 1,N(v)). Let Sr−1 and Sr be the hull sets of G in the beginning and in the ending of iteration r
of the algorithm in which v is chosen to be moved to B4, respectively. Denote t = perc(Sr−1

v,B , 1,N(v)).

Let v′ be the neighbour of v in V (B) such that perc(Sr−1
v,B , 1, {v′

}) = t . By Condition 1, min{t1(B′, v) :

B′
≠ B} > t and, by Condition 2, perc(Sr−1

v,B , 2,N(v)) > t . Then, perc(Sr , 1, {v}) > t and, by
Lemma3.5, perc(Srv,B, 1, {v

′′
}) > t , for every v′′

∈ (N(v)∩V (B))\{v′
}. Theminimality of v at iteration r

implies that themovements of the remaining iterationswill interfere only in percolation times greater
than t . Then perc(Sv,B, 1, {v′

}) = t . By Lemma 3.5 again, perc(S, 1, {v}) > t and perc(S, 1, {v′′
}) > t ,

for every v′′
∈ N(v) ∩ V (B) \ {v′

}. Then the claim holds.
Let u ∈ V (B)\B1(S) such that perc(S, 1, {u}) = k+1 and suppose by contradiction that S ′ is a hull

set of Gwith B1(S ′) = B1(S) satisfying perc(S ′, 1, {u}) > k+1. Recall that B0(S) = B0(S ′) and B1(S) =

B1(S ′). Then, using Lemma 3.6(b), we can assume B2(S) = B2(S ′) and B3(S) ∪ B4(S) = B3(S ′) ∪ B4(S ′).
Denote Nk

u = N(u)∩ Ik(S). Since perc(S, 1, {u}) = k+1, |Nk
u | ≥ 2. If |Nk

u ∩V (B)| ≥ 2, by the induction
hypothesis, we would have perc(S ′, 1, {u}) = k+ 1. Therefore, we can consider |Nk

u ∩ V (B)| ≤ 1. This
implies u ∉ B2(S).

If |Nk
u ∩ V (B)| = 0, then u ∈ B0(S) ∪ B4(S). First, consider u ∈ B0(S). Then, u ∈ Ik+1(PG). Since PG

is contained in any hull set of G it holds perc(S ′, 1, {u}) ≤ k + 1. Next, consider u ∈ B4(S). However,
this case is also not possible, since Claim 1 implies |Nk

u ∩ V (B)| ≥ 1.
Then, we can assume from now on that |Nk

u ∩V (B)| = 1. In this case,Nk
u contains at least one vertex

of Gu,B. First, consider u ∈ B0(S). Then, at least one neighbour of u contained in Gu,B belongs to Ik(PG).
Then perc(S ′, 1, {u}) ≤ k + 1. Now, consider u ∈ B4(S). Since Nk

u contains only one vertex of V (B), by
Claim1, perc(S, 1, {u}) = min{t1(B′, u)}+1. If u ∈ B3(S ′), wewould have perc(S ′, 1, {u}) = k+1, then
u ∈ B4(S ′). Since perc(S ′, 1, {u}) > perc(S, 1, {u}), we have perc(S ′, 1, {u}) = perc(S ′

u,B, 2,N(u)) + 1.
This implies perc(S ′

u,B, 2,N(u)) > min{t1(B′, u)} = r . However, this implies that Ir(S ′) contains two
neighbours of u, which is not possible.

At last, consider u ∈ B3(S). Then perc(S, 1, {u}) = 1 + perc(Su,B, 1,N(u)). In this case u ∈ B4(S ′),
otherwise perc(S ′, 1, {u}) = perc(S, 1, {u}). Then perc(S ′, 1, {u}) = 1 + min{perc(Su,B, 2,N(u)),min
{t1(B′, u) : B′

≠ B}}. Therefore, min{t1(B′, u) : B′
≠ B} > perc(Su,B, 1,N(u)). Since |Nk

u ∩ V (B)| = 1,
we have perc(Sv,B, 2,N(v)) > perc(Sv,B, 1,N(v)). Then u satisfies Conditions 1 and 2 on S, which
contradicts the assumption that the algorithm terminates having no vertices of B3(S) satisfying
Conditions 1 and 2 on S. �

98 F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99

By Lemma 3.3, Lemma 3.6(a), and Theorem 3.7, the algorithm for computing t1(B, u) and t2(B, u)
for a given vertex u of a block B of a chordal graph is direct, considering that the following auxiliary
data is known:

• t(v, B), for every v ∈ N(u) ∩ CB,
• t1(B, w) for every w ∈ CB, and
• what vertices of CB belong to B2 (Lemma 3.6(b)).

We divide the algorithm in two parts. Part 1 consists of finding t1(B, u) and t2(B, u) for every pair
(u, B) where u is a cut vertex of B. Part 2 consists of finding t2(B, u) for every pair (u, B) where u is not
a cut vertex of B.

Given a pair (u, B), for finding t1(B, u), for example, one can apply Algorithm 1 on graph Gu
B,u, block

B, and every subset B1 ⊆ V (B), with |B1| ≤ 2, saving the current maximum value. The complexity of
this algorithm, considering that all auxiliary data is known, is O(|V (B)|2|E(B)|), since the computation
of the convex hull of a set and Algorithm 1 is O(m), where m = |E(G)|. Now, we show how to get the
auxiliary data in the moment of the consideration of the pair B, u without increasing the total time
complexity of the algorithm.

First, consider the problem of identifying what vertices belong to B2. Let B be a block of G. We say
that a non cut vertex v ∈ V (B) is a B2-vertex if there is a proper convex set S in G, containing no vertex
of N[v], such that S ∪ {v} is a hull set of G. It is clear that v ∈ CB belongs to B2(S) if and only if v is a
B2-vertex of every Gv

B′,v
, for B′

≠ B.

Lemma 3.8. Let G be a graph and v a non cut vertex of G. Then v is a B2-vertex if and only if there exists
u ∈ N2(v) such that every w ∈ N(w) ∩ CB belongs to B2(S), where B is the block containing v.

Proof. The necessity is direct by the definition.
Conversely, consider u ∈ N2(v) and every w ∈ N(w) ∩ CB belongs to B2(S), where B is the block

containing v. Define S containing u, union the set Sw that is a certificate that w ∈ N(w) ∩ CB belongs
to B2(S), for every w ∈ N(w) ∩ CB, union a proper convex set of GB′,w′ containing a neighbour of w′

for every w′
∈ CB \ N(w). �

We are ready to present the algorithm to determine what vertices of CB belong to B2, for every
block B of a chordal graph G. Let u ∈ V (G) be a cut vertex, and B be a block containing u. We denote
by h(u, B) the maximum number of blocks that one must cross to reach a leaf block, starting from
u and without passing by B. Observe that initially we are able to decide only for those (u, B) with
h(u, B) = 0 (i.e., all blocks containing u other than B are leaf blocks). After this, we can decide some
other pair u, B, namely those with h(u, B) = 1. In general, if h(u, B) = k and it is known for all pairs
(u′, B′)with h(u′, B′) = k−1, thenwe can decide for (u, B). Thus, if t = max(u,B) h(u, B) andD1, . . . ,Dt
is a partition of the pairs (u, B) such that (u, B) ∈ Di if and only if h(u, B) = i. One can see that it is
possible to decide for all (u, B) in time O(mα), where α it the time to check Lemma 3.8 for a vertex v,
considering that it is known what vertices of CB belong to B2.

It remains to show how to compute all t1(B, u) and t2(B, u). We can adapt the algorithm described
in the previous paragraph to incorporate Part 1 of the algorithm described above. Observe that the
precedence constraints are weaker for t1(B, u) and t2(B, u) than for to decide what vertices belong to
B2, since to compute t1(B, u) and t2(B, u) we need of the auxiliary data restricted to the vertices of B,
while to decide what vertices belong to B2 we need the information of the vertices of all blocks of B′,
for B′

≠ B. Completed this case, all data needed to run Part 2 is known. Then, one can see that the total
time of the algorithm is O(m(α + n2m) + n3m). Resulting in a total time complexity O(n2m2).

Theorem 3.9. Let G be a chordal graph. If G is 2-connected, then t(G) can be computed in time O(n2m);
otherwise, t(G) can be computed in time O(n2m2).

Whenwe apply the algorithm for chordal graphs on a tree, we obtain a linear time algorithm, since
every block has size exactly two, the candidate hull sets S are only 4, the ones having B1(S) equal to
{u}, or {v}, or {u, v}, or the empty set.

Theorem 3.10. If T is a tree, then t(T) can be computed in linear time.

F. Benevides et al. / European Journal of Combinatorics 48 (2015) 88–99 99

References

[1] H. Amini, Bootstrap percolation in living neural networks, J. Stat. Phys. 141 (3) (2010) 459–475.
[2] R. Araújo, R. Sampaio, V. Santos, J.L. Szwarcfiter, The convexity of induced paths of order three and applications: complexity

aspects, Discrete Appl. Math. (2015) in press.
[3] J. Balogh, B. Bollobás, Bootstrap percolation on the hypercube, Probab. Theory Related Fields 134 (4) (2006) 624–648.
[4] J. Balogh, B. Bollobás, H. Duminil-Copin, R. Morris, The sharp threshold for bootstrap percolation in all dimensions, Trans.

Amer. Math. Soc. 364 (5) (2012) 2667–2701.
[5] J. Balogh, B. Bollobás, R. Morris, Bootstrap percolation in three dimensions, Ann. Probab. 37 (4) (2009) 1329–1380.
[6] J. Balogh, B. Bollobás, R. Morris, Bootstrap percolation in high dimensions, Combin. Probab. Comput. 19 (5–6) (2010)

643–692.
[7] J. Balogh, G. Pete, Random disease on the square grid, Random Struct. Algorithms 13 (1998) 409–422.
[8] F. Benevides, M. Przykucki, On slowly percolating sets of minimal size in bootstrap percolation, Electron. J. Combin. 20 (2)

(2013) P46.
[9] F. Benevides, M. Przykucki, Maximum percolation time in two-dimensional bootstrap percolation, (2014) (submitted for

publication). http://arxiv.org/abs/1310.4457v1.
[10] B. Bollobás, C. Holmgren, P.J. Smith, A.J. Uzzell, The time of bootstrap percolation with dense initial sets, Ann. Probab. 42

(4) (2014) 1337–1373.
[11] J. Calder, Some elementary properties of interval convexities, J. Lond. Math. Soc. 3 (1971) 422–428.
[12] C. Centeno, M.C. Dourado, L. Penso, D. Rautenbach, J.L. Szwarcfiter, Irreversible conversion of graphs, Theoret. Comput. Sci.

412 (2011) 3693–3700.
[13] G. Chae, E.M. Palmer, W. Siu, Geodetic number of random graphs of diameter 2, Australas. J. Combin. 26 (2002) 11–20.
[14] J. Chalupa, P.L. Leath, G.R. Reich, Bootstrap percolation on a Bethe lattice, J. Phys. C 12 (1) (1979) 31–35.
[15] N. Chen, On the approximability of influence in social networks, SIAM J. Discrete Math. 23 (3) (2009) 1400–1415.
[16] M. Chopin, Optimization problems with propagation in graphs: parameterized complexity and approximation (Ph.D.

thesis), Université Paris-Dauphine, 2013.
[17] E. Coelho, M. Dourado, R. Sampaio, Inapproximability results for graph convexity parameters, in: Workshop on

Approximation and Online Algorithms (WAOA-2013), in: Lecture Notes in Computer Science, vol. 8447, 2014, pp. 97–107.
[18] E. Dahlhaus, D. Johnson, C. Papadimitriou, E. Seymour, M. Yannakakis, The complexity of multiterminal cuts, SIAM J.

Comput. 23 (4) (1994) 864–894.
[19] P.A. Dreyer, F.S. Roberts, Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease

and of opinion, Discrete Appl. Math. 157 (7) (2009) 1615–1627.
[20] P. Duchet, Convex sets in graphs. II: Minimal path convexity, J. Combin. Theory Ser. B 44 (1988) 307–316.
[21] P. Erdős, E. Fried, A. Hajnal, E.C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972) 238–245.
[22] M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebr. Discrete Methods 7 (1986) 433–444.
[23] A. Fey, L. Levine, Y. Peres, Growth rates and explosions in sandpiles, J. Stat. Phys. 138 (2010) 143–159.
[24] F. Harary, J. Nieminen, Convexity in graphs, J. Diferential Geom. 16 (1981) 185–190.
[25] A.E. Holroyd, Sharpmetastability threshold for two-dimensional bootstrap percolation, Probab. Theory Related Fields 125

(2) (2003) 195–224.
[26] F.W. Levi, On Helly’s theorem and the axioms of convexity, J. Indian Math. Soc. 15 (1951) 65–76.
[27] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329–343.
[28] R. Morris, Minimal percolating sets in bootstrap percolation, Electron. J. Combin. 16 (1) (2009) R2.
[29] M. Przykucki, Maximal percolation time in hypercubes under 2-bootstrap percolation, Electron. J. Combin. 19 (2012) P41.
[30] E. Riedl, Largest minimal percolating sets in hypercubes under 2-bootstrap percolation, Electron. J. Combin. 17 (1) (2010)

13pp.
[31] M.L.J. van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.

http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref1
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref2
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref3
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref4
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref5
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref6
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref7
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref8
http://arxiv.org//abs/1310.4457v1
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref10
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref11
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref12
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref13
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref14
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref15
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref16
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref17
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref18
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref19
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref20
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref21
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref22
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref23
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref24
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref25
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref26
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref27
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref28
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref29
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref30
http://refhub.elsevier.com/S0195-6698(15)00034-7/sbref31

	The maximum time of 2-neighbour bootstrap percolation: Algorithmic aspects
	Introduction
	Related works and some notation

	NP-complete cases
	Polynomial time cases
	References

