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1. Introduction

A family C of subsets of a finite set V is a convexity on V if ∅ and V
belong to C and C is closed under intersections. A member of C is said to
be a convex set of C or simply a C-convex set. When there is no risk of
confusion, we omit C and write only convex set. When V is the vertex set
of a graph G, a standard way to define a convexity C on V is by fixing a
family P of paths of G and letting a subset S of V be C-convex if and only if
for every path P in P whose endpoints belong to S we have that all vertices
of P also belong to S. In that case we have a graph convexity. The most
studied graph convexities are the geodesic convexity [17, 19], the monophonic
convexity [14, 16, 18] and the P3 convexity [5], where P is, respectively, the
family of all shortest paths, of all induced paths, and of all paths of order
three of the graph. A rich source on abstract convexities is a book by van de
Vel [26].

The C-convex hull of S is the smallest C-convex set, denoted HC(S), con-
taining S. We say that S is a C-hull set if HC(S) = V (G). The C-hull number
is the cardinality of the minimum C-hull set and is denoted by hC(G). The
C-interval of S, denoted IC(S), consists of S and all vertices lying in some
path of P that has endpoints in S. Observe that, since G is finite, the C-
convex hull of S can be obtained by starting with S and repeatedly applying
the C-interval function until we obtain a C-convex set.

We may also see the above process, used to obtain the C-convex hull of S,
as an infection that starts at the set S and spreads to other vertices through
the paths (of P) that connect two infected vertices. Here, we are interested
in the maximum amount of time needed to infect all vertices starting with
a C-hull set, where one unit of time corresponds to applying the interval
function once. More precisely, let I0

C(S) = S and Ik
C (S) = IC(Ik−1

C (S)) for
k ≥ 1. We say that a hull set S takes time k to infect G if Ik

C (S) = V (G)
but Ik−1

C (S) 6= V (G) (when S = V (G) we say it takes time 0 to infect G).
The infection time of G relative to C, called tC(G), is the maximum k such
that there is a C-hull set S which takes time k to infect G. We considered
the decision version of this problem.

MAX Infection time on convexity C
Input: A graph G and an integer k.
Question: Is tC(G) ≥ k?
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There is vast literature about “infection problems”, also studied under
the names “dissemination”, “diffusion” or “conversion” [2, 3, 21]. However,
the way such infections spread varies considerably. For example, another
common model is r-neighbour bootstrap percolation in which a vertex be-
comes infected if it has at least r infected neighbors, a model introduced by
Chalupa, Leath and Reich [10] that has found many applications in physics
and computer science [15]. There are also applications in clustering phenom-
ena, sandpiles [20], and many other areas of statistical physics, as well as in
neural networks [1].

The question about the maximum infection time was originally posed by
Bollobás for the 2-neighbour bootstrap percolation in the square grid, and
solved by Benevides and Przykucki [8]. We remark that in general, counter-
intuitively, a hull set S that infects G in time tC(G) may need to have more
than hC(G) elements. That is, a set that infect G at the maximum possible
time does not have to be of minimum order (although it has to be minimal).
This follows from the main results in [7] and [8], even when G is a grid and
C is the P3-convexity.

Note that the 2-neighbour bootstrap percolation model coincides with the
infection problem for the P3 convexity. The algorithm complexity of MAX
Infection time on the P3 convexity was considered in [6] where it was
shown that it is NP-complete for general graphs and any fixed k ≥ 4, and
it was given polynomial algorithms for planar graphs, trees, chordal graphs,
and for k ≤ 2. In 2014, Marcilon et al. obtained polynomial time algorithms
for k ≤ 3 in general graphs and k ≤ 4 in bipartite graphs, and proved that
it is NP-complete for k ≥ 5 in bipartite graphs [23]. In 2015, Marcilon and
Sampaio proved that it is NP-complete even in grid graphs with maximum
degree 3 and it is polynomial time solvable in solid grid graphs with maximum
degree 3 [24]. The question about solid grid graphs with maximum degree 4
is still open.

Regarding the monophonic convexity, it was proved in 2015 that the
maximum infection time problem is NP-complete for k ≥ 2 in bipartite graphs
[12]. In 2010, Dourado et al. obtained an O(n3m)-time algorithm to compute
a minimum hull set for the monophonic convexity [14].

In this work, we consider the MAX Infection Time on the geodesic and
on the monophonic convexities. This problem is, therefore, at the intersec-
tion of two large branches: “convexity problems” and “infection problems”.
In Section 3, we prove that the Max infection time on geodesic con-
vexity is NP-complete even if the input graph is bipartite and k ≥ 2 is fixed.
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In Section 4, we obtain an important characterization of all minimal hull sets
in the monophonic convexity (see Theorem 4.9). We also consider the prob-
lem of determining the hull number of G in the monophonic convexity. As a
matter of fact, we observe that the clique decomposition presented in [22] can
be used to improve the time complexity of the fastest known algorithm [14]
for this problem from O(n3m)-time to O(nm)-time. These results are useful
for a polynomial time algorithm, which is given in Section 5, for computing
the maximum infection time on distance-hereditary graphs, a class of graphs
where the geodesic and monophonic convexities coincide. In the next section,
we present some useful definitions and examples.

2. Preliminaries and notation

We consider only finite, simple, and undirected graphs. For a vertex u
of a graph G, denote by N(u) the set of neighbors of u, and for S ⊆ V (G),
denote by N(S) the set {v : v ∈ N(u) \ S and u ∈ S}. The subgraph of G
induced by S is denoted by G[S]. For two vertices u, v ∈ V (G), the distance
of u to v, denoted d(u, v), is the number of edges in a shortest path between
u and v. If every two vertices of S are adjacent, then S is called a clique of
G; and if every two vertices are not adjacent, then S is called an independent
set of G. A graph is bipartite if its vertex set can be partitioned into two
independent sets. A vertex v is called simplicial if N(v) is a clique. For any
positive integer n, we define [n] to be the set {t : t is integer and 1 ≤ t ≤ n}.

When there is no ambiguity about which graph convexity we are using,
we will drop the symbol of the convexity. For example, we will use H(S) to
denote the convex hull of S in the considered underling convexity. On the
other hand, sometimes only the type (e.g., geodetic, monophonic or P3) of
convexity is clear but not the convexity itself. For example, it may be clear
that we are working on the geodesic convexity, but the family C of convex
sets still depends on the underling graph G: a set S may be convex in a
graph G but not in a subgraph G′ of G, even if S ⊆ V (G′), and vice-versa.
Therefore, in some places, it will be useful to have a subscript to identify
which graph was used to define the convexity.

As an example of the infection process, we present a family of (distance-
hereditary) graphs Hk, for k ≥ 1, where t(Hk) = k in either the geodesic
or monophonic convexity. This family will be useful in the proof that the
Max infection time on geodesic convexity problem is NP-complete
for bipartite graphs (Theorem 3.1). The graph Hk is defined recursively as
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Figure 1: The Graph H9, which is distance-hereditary. A value inside the vertex is the
time which the vertex becomes infected starting from the hull set v1, v3.

follows (see also Figure 1): H1 is a cycle of length four, where V (H1) =
{v1, v2, v3, v4} and E(H1) = {v1v2, v2v3, v3v4, v4v1}, and for k ≥ 2 we set

V (Hk) = V (Hk−1) ∪ {vk+3} and (1)
E(Hk) = E(Hk−1) ∪ {vk+3vk, vk+3vk+2}. (2)

For our NP-completeness result, we will make a polynomial reduction
from the following well known NP-complete problem [11].

3Sat
Input: A formula F in the CNF such that each clause has size 3.
Question: Is there a truth assignment satisfying all clauses of F?

3. Geodetic infection time on Bipartite graphs

Throughout this section, we only consider the geodesic convexity. Our
goal is to prove the following theorem.

Theorem 3.1. MAX Infection time on geodesic convexity is NP-
complete even if the input graph is known to be bipartite and k ≥ 2 is fixed.

5



Proof. Let G be a graph, S be any subset of its vertices, and k ≥ 1 be an
integer. Since the set I(S), result of the interval function applied to S, can
be obtained in polynomial time on the size of G [13], for a given k one can
check in polynomial time if Ik(S) = V (G). Therefore this problem belongs
to NP.

For the proof of the hardness, we first treat the case where k = 2. We shall
do a reduction from 3Sat. Consider a boolean formula in the conjunctive
normal form with m clauses, say F = {C1, . . . , Cm}, on the set of variables
{x1, . . . , xn}.

For each clause Ci of F we build a clause gadget, the bipartite graph
depicted in Figure 2, whose vertex set is {ui, ti} ∪ {vi,l, wi,l, xi,l, yi,l : l ∈ [3]},
and edge set is {uiti} ∪ {uivi,l, tiwi,l, vi,lwi,l, wi,lxi,l, xi,lyi,l : l ∈ [3]}.

We construct a graph G as follows. Add each clause gadget to G and
further add vertices q, r and s along with the edges rxi,l, sti for every i ∈ [m]
and l ∈ [3]. Finally, for every pair of literals `i,a ∈ Ci and `j,b ∈ Cj, where
i 6= j and a, b ∈ [3], such that `i,a and `j,b are not the negation of each other,
add vertices oi,a,j,b, pi,a,j,b along with the edges oi,a,j,bpi,a,j,b, oi,a,j,bq, oi,a,j,bwi,a,
oi,a,j,bwj,b, to complete the construction of G. See Figure 3 for a partial
construction of the graph G, when F = {C1, C2, C3} where C1 = {x1, x2, x4},
C2 = {x2, x3, x4}, C3 = {x1, x2, x4}. Note that the gray and white vertices
define a bipartition of G.

We let W = {wi,l : for i ∈ [m], l ∈ [3]}, T = {ti : for i ∈ [m]}. Similarly
O is the set of vertices oi,a,j,b for all values of i, a, j, b for which oi,a,j,b is
defined. Define X, Y , V , U and P in a analogous way. Finally for every
i ∈ [m], let Di = {ui, vi,1, vi,2, vi,3}.

Now we show that there exists a truth assignment A, to the variables
{x1, . . . , xn}, satisfying all clauses of F if and only if the infection time of G
is at least 2. This shall be a consequence of a few claims.
Claim 1. Every hull set of G contains at least one vertex of Di, for every
i ∈ [m].

Proof. Fix i ∈ [m]. It suffices to show that V (G) \ Di is a convex set of
G. Define Ei = N(Di) = {ti, wi,1, wi,2, wi,3}. Observe that V (G) \ Di is a
convex set if and only if I(Ei) ∩Di = ∅. We distinguish two possibilities for
a pair of vertices z, z′ ∈ Ei. The first one is z = ti and z′ = wi,a, for some
a ∈ {1, 2, 3}. In this case zz′ ∈ E(G) and then I(z, z′) = {z, z′}. The second
one is z = wi,a and z′ = wi,b, for some a, b ∈ {1, 2, 3} with a 6= b. Since
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ui

ti

vi,1 vi,2 vi,3

wi,1 wi,2 wi,3

xi,1 xi,2 xi,3

yi,1 yi,2 yi,3

Figure 2: Clause gadget.

ti ∈ N(z) ∩ N(z′), it holds d(z, z′) = 2. In fact, ti is the unique common
neighbour of z and z′. Then, I(z, z′) = {z, z′, ti}.

Claim 2. Let z ∈ Di, for some i ∈ [m]. Then Di∪{ti} ⊂ I({z, yi,1, yi,2, yi,3}).

Proof. If z = ui, it is clear that zvi,awi,axi,ayi,a is a shortest path between
z = ui and yi,a, for any a ∈ {1, 2, 3},; and that ztiwi,1xi,1yi,1 is a shortest
path between z = ui and yi,1 (in G).

Now, if z = vi,a, for some a ∈ {1, 2, 3}, it is also clear that zuivi,bwi,bxi,byi,b,
and zuitiwi,bxi,byi,b are shortest paths between z = vi,a and yi,b, for any b 6= a,
with b ∈ {1, 2, 3}.

Claim 3. W ∪X ∪O ∪ {q, r} ⊂ I(Y ∪ P ) and s 6∈ I(Y ∪ P ).

Proof. For every vertex z ∈ W ∪X ∪O ∪ {q, r} we show that there exists a
pair of vertices z′, z′′ ∈ Y ∪P such that z ∈ I({z′, z′′}). Recall that that G is
bipartite, and color its vertices with “black” or “white” as in Figure 3. Note
that Y ∪ P is a subset of the “black” vertices. Also, for two “black” vertices
z′, z′′, we have that d(z′, z′′) < 4 if and only if z′ and z′′ have a common
neighbor.

Therefore, for any two distinct vertices z′, z′′ ∈ Y , we have d(z′, z′′) = 4.
Since there is a path of length 4 between z′ and z′′ that pass through r, we
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u1

t1

w1,3

u2

t2

w2,1

u3

t3

w3,1

sr

q

o1,3,2,1

p1,3,2,1

o1,3,3,2

p1,3,3,2

Figure 3: Partial construction of G for F = {C1, C2, C3} where C1 = {x1, x2, x4}, C2 =
{x2, x3, x4}, C3 = {x1, x2, x4}. The figure does not contain all vertices of O and P . In
fact, it shows only vertices of O and P related with the literal x4 of C1.
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have that r ∈ I({z′, z′′}). Similarly, for any two distinct vertices z′, z′′ ∈ P ,
we have that q ∈ I({z′, z′′}).

Let i ∈ [m] and a ∈ {1, 2, 3}. Since there exists at least one pair (j, b) for
which pi,a,j,b is a vertex, there exists the shortest path yi,axi,awi,aoi,a,j,bpi,a,j,b.
Then one can easily check that W ∪X ∪O ⊂ I(Y ∪ P ).

It remains to show that s 6∈ I(Y ∪P ). Note that for any p ∈ P and y ∈ Y ,
we have that d(q, p) = 2, d(r, y) = 2 and d(q, y) = 4. This implies that the
distance between any two vertices of Y ∪ P is at most 6. Since d(z′, s) = 4
for any vertex z′ ∈ Y ∪ P , we have that any path between two vertices of
Y ∪P that pass through s has length at least 8. Therefore s 6∈ I(Y ∪P ) and
the claim holds.

Claim 4. V (G) \ {s} ⊆ I(S), for every hull set S of G.

Proof. Since all vertices of Y and P are pendant vertices we have Y ∪P ⊂ S
for any hull set S. Then, by Claim 3, it remains to show only that V ∪U∪T ⊂
I(S). By Claim 1, there exists v ∈ S∩Di, for every i ∈ [m]. Applying Claim 2
for each such v, we complete the proof of Claim 4.

Claim 5. Let vi,a and vj,b with i 6= j. Then s ∈ I({vi,a, vj,b}) if and only if
`i,a is the negation of `j,b.

Proof. Note that d(vi,a, s) = d(vj,b, s) = 3. Then, s 6∈ I({vi,a, vj,b}) if and
only if d(vi,a, vj,b) < 6, i.e., d(vi,a, vj,b) = 2 or d(vi,a, vj,b) = 4. The first case is
not possible because there is no possibility for vi,a and vj,b share a neighbour.
The other possibility occurs if and only if two vertices, one neighbour of each
one, share a neighbour. Since N(vi,a) = {wi,a, ui} and N(vj,b) = {wj,b, uj},
the path of length 4 must be vi,awi,azwj,bvj,b. By the construction, z = oi,a,j,b

and `i,a is the negation of `j,b.

Now, let us finish the proof of Theorem 3.1. Let S be a hull set of G
such that I(S) is a proper subset of V (G), that is, t(S) > 1. By Claim 4,
I(S) = V (G) \ {s}. By Claim 1, for every i ∈ [m], the set S contains some
vertex of Di. Suppose, by contradiction, that for some j ∈ [m], it holds
uj ∈ S ∩Dj. Observe that s is in a shortest path between uj and u, where u
is some vertex of S ∩Dk, for any k 6= j, which is a contradiction. Then, for
every i ∈ [m], S contains vi,ai

, where ai ∈ {1, 2, 3}. By Claim 5, every pair
of literals `i,a ∈ Ci and `j,b ∈ Cj associated to vertices vi,a and vj,b contained
in S are not the negation of each other. Then, the truth assignment where
`i,a is true if and only if vi,a belongs to S satisfies all clauses of F .
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Conversely, let A be a truth assignment for {x1, . . . , xn} satisfying all
clauses of F . Consider the set S formed by the pendant vertices of G plus
one vertex vi,a for every clause Ci of F , where vi,a is chosen if `i,a assumes
value true by A. By Claim 3 and Claim 2, V (G)\{s} ⊆ I(S). And, since s is
not a simplicial vertex of G, it follows that S is a hull set of G. By Claim 5,
it remains to show that s 6∈ I(u, v) for u ∈ Y ∪ P and v ∈ V . Note that
d(u, s) = 4 and d(v, s) = 3, but d(u, v) ≤ 5, completing the proof for k = 2.

Now suppose that k > 2. To finish the proof, it suffices to add to the
construction of G a vertex s′ twin to s and a copy of the graph Hk−2 (as
defined by equations (1) and (2) at the end of Section 2), such that s′ and s
are identified to the vertices v1 and v3 of the copy of Hk−2, respectively. It
is not hard to check that this new graph G has infection time k if and only
if F is satisfiable.

4. Minimal and minimum hull sets in the monophonic convexity

Here, we call any hull set in the monophonic convexity by m-hull set. In
this section we show how to use results of Leimer [22], about the clique sep-
arator decomposition, to improve the complexity of the fastest known (poly-
nomial) algorithm [14] for finding a minimum m-hull set of a general graph.
We also present a characterization of all minimum and of all minimal m-hull
sets of general graphs. The later result is essential to our polynomial time
algorithm for finding the maximum infection time in a distance-hereditary
graph, that will be presented in Section 5.

A survey on clique separator decompositions can be found in [9]. Let us
start with some preliminary notations. Given a graph G and a set C ⊆ V (G),
we say that C is a separator of G if there are non-empty sets A, B ⊂ V (G)\C
such that every path in G, between some a ∈ A and b ∈ B, contains a vertex
in C. Separators that are cliques are called clique separators. If C is a clique
separator of G and H is any connected component of G − C, the subgraph
G[V (H)∪C] is called an C-component of G. The family of C-components of
G is a decomposition of G. We say that G is reducible if it contains a clique
separator, otherwise it is called a prime. We note that, in the literature,
those are also called atoms. A maximal prime subgraph of G, or simply
mp-subgraph of G, is a maximal induced subgraph of G that is prime.

A separator C is a minimal separator of G if no proper subset of C is a
separator of G. And C is a relative minimal separator for G if there exist
vertices v, w ∈ V (G) such that v and w are in different components of G−C,
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but for every proper subset C ′ of C we have that u and w are in the same
component of G−C ′. Note that every minimal separator is a relative minimal
separator for G, but the reverse is not true.

Assume that a reducible graph G is decomposed by a clique C and each
C-component is decomposed further until all derived subgraphs are prime.
A family of prime subgraphs of G that can be derived in that way will be
called a derived family.

Lemma 4.1. Let C be a clique of G and G1 be a C-component. Then any
separator of G1 is also a separator of G. Furthermore, if S is a relative
minimal separator of G1 then it is a relative minimal separator of G.

Proof. Let G, C, and G1 be defined as in the statement. Let S be a separator
of G1. So there exist vertices x, y ∈ G1 such that any path from x to y in G1
pass through S. Suppose that there is a path in G from x to y that avoids
S. Since C is a clique, we can shorten this path to a path in G1 (that shall
also avoids S). Therefore, S also separates x from y in G. For the last part,
it is trivial that if S is minimal for x, y in G1 then it is also minimal for x, y
in G.

By the previous proposition, we also notice that if G1 is a C-component
of G, where C is a clique, and x, y ∈ V (G1) then any induced path from x
to y in G must have all its vertices in G1. That is the intuition on why the
clique separator decomposition is usefull to solve problems in the monophonic
convexity. The following result of [14] indicates why this decomposition is
fruitful for finding m-hull sets.

Theorem 4.2. [14] If G is a prime graph that is not a complete graph, then
every pair of non-adjacent vertices is an m-hull set of G.

Consider a graph G and a clique separator of C. Clearly, any mp-subgraph
of a graph is “unbreakable” under a C-decomposition (that is, it must be
contained in a C-component). Therefore, every mp-subgraph of G is an mp-
subgraph of some C-component of G. The converse is not always true. But
we have the following result.

Lemma 4.3. A derived family is exactly the family of mp-subgraphs of G if
and only if it is obtained by a decomposition that uses only cliques that are
relative minimal separators of G.

11



Proof. This follows directly from (2.2) of [22] together with itens (i) and (iii)
of Theorem 4.1 of [22]).

In our proofs, we will also need the following concepts. Given any graph
G, consider an (arbitrary) ordering of the mp-subgraphs F1, . . . , Ft of G and
then define Ri = V (Fi) ∩ (V (F1) ∪ . . . ∪ V (Fi−1)), for i ∈ [t]. This ordering
of the mp-subgraphs is a D-ordering if, for all i ∈ {2, . . . , t}, there is j such
that j < i and Ri ⊆ V (Fj). According to Theorem 2.5 of [22], there is a D-
ordering for the mp-subgraphs of any graph. Further, Proposition 2.4 of [22]
says that every permutation of the mp-subgraphs of G that is a D-ordering
has the same family of Ri sets. Then, one can define R(G) = {R2, . . . , Rt}
and R(G) = R2 ∪ . . . ∪ Rt, taking as starting point any D-ordering of the
mp-subgraphs of G. We will also use the following result of Leimer (again
see Theorem 4.1 of [22], itens (i) and (iv)).

Theorem 4.4. [22] Let C be a set of vertices of a graph G. We have that C
is a clique and a relative minimal separator for G if and only if C ∈ R(G).

In our algorithm, we shall adapt results of [14]. There, the authors have
used a decomposition of the following type. Take a minimal clique C of
G, look at the C-components of G, say G1, . . . , Gt. For each component
take a minimal clique separator of that component and continue the process
recursively to obtain a derived family. Note that the minimal separator of
the components does not have to be a minimal separator of G. After that,
they classify each set in the derived family into certain types and used this
classification to find an m-hull set of G. We observe that any minimal clique
separator in G1 is a relative minimal clique for G1. By Lemma 4.1, it is also a
relative minimal separator of G. By the same argument, for any component
obtained at further steps in that decomposition, any minimal clique separator
of that component is a relative minimal clique separator of G. By Lemma 4.3,
the derived family obtained in [14] is precisely the family of mp-subgraphs.

As a consequence of the above, we can rewrite the characterization of
minimum m-hull sets presented in [14]. Let F be any mp-subgraph. We say
that F is:

type 0 if V (F ) ∩R(G) is not a clique;

type 1 if V (F )∩R(G) is a clique and there is a vertex u ∈ V (F ) not adjacent
to some vertex of V (F ) ∩R(G);
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type 2 if V (F )∩R(G) is a clique, V (F ) is not a clique, and every vertex of
V (F ) ∩R(G) is universal in F ;

type 3 if V (F ) is a clique.

As observed in [14], one can check that F is of exactly one of the above
types. This result implies that we can also rewrite the characterization of
minimum m-hull sets from [14] using mp-subgraphs.

Theorem 4.5. A set S is a minimum m-hull set of a graph G if and only if
for every mp-subgraph F of G, the set S satisfies the following conditions:

• if F is of type 0, then S ∩ V (F ) = ∅;

• if F is of type 1, then S ∩ (V (F ) \ R(G)) = {u} for a vertex u not
adjacent to some vertex of V (F ) ∩R(G));

• if F is of type 2, then S ∩ (V (F ) \ R(G)) = {u, v} for some pair u, v
of non-adjacent vertices;

• if F is of type 3, then V (F ) \R(G) ⊆ S.

The algorithm used in [14] to find the monophonic hull number of a graph
on n vertices and m edges, had running time O(n3m) and consisted in finding
minimal clique separators (using an algorithm for finding a clique separator
of a graph [27]) and recursively obtaining the derived family. Now, using
Theorem 4.5, the complexity analysis is the following. The mp-subgraphs
and R(G) can be found in O(nm) time using the algorithm of Leimer [22].
The number of mp-subgraphs of G is O(n) [22, 25]. The type of each mp-
subgraph can be found in O(m) time. To compute the hull number we
only have to add 1 for each mp-subgraph of type 1, two for each of type 2
and V (F ), and |V (F ) \ R(G)| for each of type 3. We note that since the
sets V (F ) \ R(G) are disjoint, there is no double counting in the previous
summation. Therefore, one can find a minimum hull set of any graph in the
monophonic convexity in O(nm) steps.

In the sequel, we present a characterization of minimal m-hull sets. First,
we state two simple lemmas from [14] rewriting them using the equivalence
of the atoms in their decomposition with the mp-subgraphs.

Lemma 4.6. [14] Let F be an mp-subgraph of G. If F is of type t, t ∈ {1, 2},
then every m-hull set of G contains at least t vertices of V (F ) \R(G).
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Lemma 4.7. [14] A vertex v is simplicial in G if and only if it belongs to a
mp-subgraph of G of type 3 and v 6∈ R(G).

Next, it is useful to show that R(G) is contained in the interval of any
m-hull set of G.

Theorem 4.8. Let G be a graph and S a minimal m-hull set of G. Then
R(G) ∩ S = ∅ and R(G) ⊂ I(S).

Proof. For every Ri ∈ R(G), Theorem 4.4 says that Ri is a minimal clique
separator of G relative to some pair of vertices vi,1, vi,2. Denote by Hi,1 and
Hi,2 the Ri-components of G containing vi,1 and vi,2, respectively. Note that
the complement, in G, of V (Hi,j) \ Ri is a m-convex set for j ∈ 1, 2. This
implies that S ∩ (V (Hi,j) \ Ri) is non-empty. And, by the minimality of Ri,
every vertex of Ri has a neighbor in Hi,1 and in Hi,2. This implies that there
are vertices v′i,j ∈ S∩ (V (Hi,j)\Ri), for j ∈ {1, 2} such that, for every u ∈ Ri

there is an induced path P1 from v′i,1 to u in Hi,1 and an induced path P2 from
v′i,2 to u in Hi,2. Since V (Pj) ∩ Ri = {u}, for j ∈ {1, 2}, it is clear that the
concatenation of P1 and P2 is an induced path Pu of G, concluding the proof
that R(G) ⊂ I(S). Since S is minimal, we also have that R(G)∩ S = ∅.

Now, we can present the characterization of minimal m-hull sets of general
graphs.

Theorem 4.9. A set S is a minimal m-hull set of a graph G if and only if
for every mp-subgraph F of G, S satisfies the following conditions:

• if F is of type 0, then S ∩ V (F ) = ∅;

• if F is of type 1, then either S∩(V (F )\R(G)) = {u} for a vertex u not
adjacent to some vertex of V (F )\R(G)) or S∩(V (F )\R(G))) = {u, v}
for some pair u, v of non-adjacent vertices;

• if F is of type 2, then S ∩ (V (F ) \ R(G)) = {u, v} for some pair u, v
of non-adjacent vertices;

• if F is of type 3, then V (F ) \R(G) ⊆ S.

Proof. Let k be the number of mp-subgraphs of G, where k ≥ 1. Let S be
a minimal m-hull set of G and F an mp-subgraph F of G of type t. By
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Theorem 4.8, we know that R(G) ∩ S = ∅, then the vertices of F contained
in S belong to V (F ) \R(G).

If t = 0, there are members Rx and Ry of R(G) contained in F such
that Rx ∪ Ry is not a clique. Defining the vertices vx,1, vx,2, vy,1, vy,2 as in
the proof of Theorem 4.8, we can conclude that at least one of vx,1, vx,2 and
one of vy,1, vy,2 does not belong to V (F ). Therefore, for every vertex u of
Rx ∪ Ry there is an induced path Pu with endpoints in S that pass through
u, similar to the one constructed in the proof of Theorem 4.8. Then, since S
is minimal, S does not contain any vertex of F .

If t = 1, by Lemma 4.6, the set S contains at least one and at most two
vertices of F . If S ∩ F contains one vertex, it is clear that it must be not
adjacent to some vertex of V (F )∩R(G). Now, suppose that S ∩ F contains
two vertices, say x and y. If these two vertices were adjacent, then at least
one of them, say x, must be not adjacent to some vertex x′ of some member
Rx ∈ R(G) with Rx ⊆ V (F ) ∩ R(G). Now, considering vertices v′x,1 and
v′x,2 analogously defined as in the previous case, we can say that at least one
of them, say vx,1, is not contained in V (F ). Then, we can conclude that
there is an induced path from x to vx,1 containing x′. This would imply that
y ∈ H(S \ {y}). Therefore xy 6∈ E(G).

If t = 2, by Lemma 4.6, the set S contains two non-adjacent vertices of
V (F ) \ R(G). Since these two vertices form an m-hull set of G and S is
minimal, we have |S ∩ (F \R(G))| = 2.

The result for t = 3 follows directly from Lemma 4.7 and the fact that
Theorem 4.8 implies that S ∩R(G) = ∅.

Conversely, let S be a set of vertices of G satisfying, for every mp-
subgraph F of G, the property associated with the type of F . If, for some
mp-subgraph F of G of type 1, the set S contains two non-adjacent vertices,
then V (F ) ⊆ H(S), by Theorem 4.2. This implies that H(S) contains a
set satisfying all four conditions of Theorem 4.5, which implies that S is an
m-hull set of G.

5. Infection time on distance-hereditary graphs

A connected graph G is called distance-hereditary if for every induced
subgraph G′ of G and every pair of vertices u, v ∈ V (G′) it holds that
dG(u, v) = dG′(u, v). This graph class admits a characterization by forbid-
den induced subgraphs and recognition in polynomial time [4]. Observe that
geodesic and monophonic convexities coincide in distance-hereditary graphs,
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since for a graph in this class every induced path is also a shortest path. Al-
though even the computation of the interval function is a NP-hard problem
in the monophonic convexity for general graphs [14], the previous fact allows
us to use the known algorithms for computing the interval function in the
geodesic convexity together with the characterization of minimal m-hull sets
for solving the maximum infection problem in distance-hereditary graphs.
Next, we present a polynomial algorithm for that.

Since every hull set of a graph G contains a minimal hull set, t(G) can
be determined by finding the maximum t(S) among all minimal hull sets
of G. Theorem 4.9 characterizes the minimal m-hull sets of G according
to their intersections with mp-subgraphs. The overall idea of our algorithm
consists in decomposing G into mp-subgraphs, and reducing the problem of
computing the maximum infection time of G to the problem of computing
the infection time of a polynomial number of sets of these prime graphs.

We need of some definitions. Let G be a graph, S a hull set of G, and F
an mp-subgraph of G. Let

• F ∗ be the graph obtained from F by adding, for every Cj ∈ R(G) such
that Cj ⊂ V (F ), a vertex xj and the edges {vxj : v ∈ Cj}; and

• SF = (S ∩ V (F )) ∪ {xj : Cj ⊆ R(G) ∩ V (F )};

The following result shows that, for every mp-subgraph F of a graph G
and any hull set S of G, if we start an infection with S, we can determine
which vertices of F become infected at any given time by looking only at
infected vertices in SF .

Lemma 5.1. Let F be an mp-subgraph and S an m-hull set of a graph G.
Then Ik

G(S) ∩ V (F ) = Ik
F ∗(SF ) ∩ V (F ), for any k ≥ 0.

Proof. For k = 0, the definitions imply that S ∩ V (F ) = SF ∩ V (F ). For
k > 0, observe that it suffices to show IG(S)∩V (F ) = IF ∗(SF )∩V (F ). And
this is equivalent to show that a vertex v ∈ V (F ) \ S is in an induced path
of G between two vertices of S if and only if v is in an induced path of F ∗

between two vertices of SF .
Let w ∈ V (F )\S, and Puv be an induced (u, v)-path of G passing through

w such that u, v ∈ S. Denote by Puw the subpath of Puv beginning at u and
ending at v. If u ∈ V (F ), define P ′uw = Puw. Otherwise Puw contains a vertex
u′ of some clique Ci ∈ R(G) such that Ci ⊂ V (F ). In this case, define P ′uw

as xi concatenated with the subpath of Puw beginning at u′ and ending at
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w. Define Pvw and P ′vw analogously. It is clear that P ′uw concatenated with
P ′vw is a induced path of F ∗ passing through w such that the extremities are
two vertices of SF .

Conversely, let w ∈ V (F ∗) \ SF , and Puv be an induced (u, v)-path of F ∗

passing through w such that u, v ∈ SF . Denote by Puw the subpath of Puv

beginning at u and ending at v. If u ∈ V (F ), define P ′uw = Puw. Otherwise
u = xj for some Ri ∈ R(G) such that Ri ⊂ V (F ). Theorem 4.4 says that Ri

is a minimal separator of G relative to some pair of vertices vi,1, vi,2. Without
loss of generality we can say that the Ri-component Hi,1 containing vi,1 does
not contain F . Observe that Hi,1 is a proper m-convex sets of G and that
every vertex of Ri has a neighbor in Hi,1. This implies that there is a vertex
v′i,1 ∈ S ∩ (V (Hi,1) \ Ri). Then, consider an induced path Pi,1 of Hi,1 − Ri

from v′i,1 to some vertex u′′ that is neighbor to some vertex u′ ∈ Ri∩V (Puw).
Now, define P ′uw as the concatenation of the three paths Pi,1, the edge u′u′′,
and the subpath of Puw from u′ to w.

Next, define Pvw and P ′vw analogously. It is clear that P ′uw concatenated
with P ′vw is a induced path of G passing through w such that the extremities
are two vertices of S.

This result has the following important consequence for the algorithm.

Corollary 5.2. Let G be a graph. Then t(G) = max{tF ∗(SF ) : S is a
minimal m-hull set and F is an mp-subgraph of G}.

We can now describe the algorithm for computing t(G) of a distance-
hereditary graph G with n vertices and m edges in the geodesic or mono-
phonic convexity. The mp-subgraphs and R(G) can be found in O(nm)
time [22]. The number of mp-subgraphs of G is O(n) [22, 25]. The type
of each mp-subgraph can be determined in O(m) time. By Corollary 5.2,
for every mp-subgraph F of G, we need to find the set maximizing tF ∗(SF )
among all minimal hull sets S of G. However, by Lemma 5.1, it suffices to
consider all distinct intersections of V (F ) with all minimal hull sets of G. By
Theorem 4.9, the number of such intersections is O(n2) for mp-subgraphs of
types 1 and 2, and is O(1) for mp-subgraphs of types 0 and 3. Finding k
such that Ik(S) = H(S) can be done in O(nm) steps for general graphs in
the geodesic convexity [13] for any set S. Then, a direct analysis leads to an
algorithm with time complexity O(n4m). However, we observe that the sum
of the distinct intersections of all mp-subgraphs of G with all minimal hull
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sets of G is O(n2). Then, doing an amortized analysis, we conclude that the
total complexity of this algorithm is O(n3m).

References

[1] Amini, H. (2010). Bootstrap percolation in living neural networks. Jour-
nal of Statistical Physics, 141(3):459–475.

[2] Balogh, J., Bollobás, B., Duminil-Copin, H., and Morris, R. (2012). The
sharp threshold for bootstrap percolation in all dimensions. Transactions
of the American Mathematical Society, 364(5):2667–2701.

[3] Balogh, J., Bollobás, B., and Morris, R. (2009). Bootstrap percolation in
three dimensions. The Annals of Probability, pages 1329–1380.

[4] Bandelt, H.-J. and Mulder, H. M. (1986). Distance-hereditary graphs.
Journal of Combinatorial Theory, Series B, 41(2):182–208.

[5] Barbosa, R. M., Coelho, E. M., Dourado, M. C., Rautenbach, D., and
Szwarcfiter, J. L. (2012). On the carathéodory number for the convexity of
paths of order three. SIAM Journal on Discrete Mathematics, 26(3):929–
939.

[6] Benevides, F., Campos, V., Dourado, M. C., Sampaio, R. M., and Silva,
A. (2015). The maximum time of 2-neighbour bootstrap percolation: al-
gorithmic aspects. European Journal of Combinatorics. in press, corrected
proof.

[7] Benevides, F. and Przykucki, M. (2013). On slowly percolating sets of
minimal size in bootstrap percolation. The Electronic Journal of Combi-
natorics, 20(2):1–20.

[8] Benevides, F. and Przykucki, M. (2015). Maximum percolation time in
two-dimensional bootstrap percolation. SIAM Journal on Discrete Math-
ematics, 29(1):224–251.

[9] Berry, A., Pogorelcnik, R., and Simonet, G. (2010). An introduction to
clique minimal separator decomposition. Algorithms, 3(1):197–215.

[10] Chalupa, J., Leath, P., and Reich, G. (1979). Bootstrap percolation on
a bethe lattice. Journal of Physics C Solid State Physics, 12(1):31–35.

18



[11] Cook, S. A. (1971). The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM.

[12] Costa, E. R., Dourado, M. C., and Sampaio, R. M. (2014). Inapprox-
imability results related to monophonic convexity. Discrete Applied Math-
ematics, (to appear).

[13] Dourado, M. C., Gimbel, J. G., Kratochvíl, J., Protti, F., and Szwar-
cfiter, J. L. (2009). On the computation of the hull number of a graph.
Discrete Mathematics, 309(18):5668–5674.

[14] Dourado, M. C., Protti, F., and Szwarcfiter, J. L. (2010). Complexity
results related to monophonic convexity. Discrete Applied Mathematics,
158(12):1268–1274.

[15] Dreyer, P. A. and Roberts, F. S. (2009). Irreversible k-threshold pro-
cesses: Graph-theoretical threshold models of the spread of disease and of
opinion. Discrete Applied Mathematics, 157(7):1615–1627.

[16] Duchet, P. (1988). Convex sets in graphs, ii. minimal path convexity.
Journal of Combinatorial Theory, Series B, 44(3):307–316.

[17] Everett, M. G. and Seidman, S. B. (1985). The hull number of a graph.
Discrete Mathematics, 57(3):217–223.

[18] Farber, M. and Jamison, R. E. (1986). Convexity in graphs and hyper-
graphs. SIAM Journal on Algebraic Discrete Methods, 7(3):433–444.

[19] Farber, M. and Jamison, R. E. (1987). On local convexity in graphs.
Discrete Mathematics, 66(3):231–247.

[20] Fey, A., Levine, L., and Peres, Y. (2010). Growth rates and explosions
in sandpiles. Journal of Statistical Physics, 138(1-3):143–159.

[21] Holroyd, A. E. (2003). Sharp metastability threshold for two-
dimensional bootstrap percolation. Probability Theory and Related Fields,
125(2):195–224.

[22] Leimer, H.-G. (1993). Optimal decomposition by clique separators. Dis-
crete mathematics, 113(1):99–123.

19



[23] Marcilon, T., Nascimento, S., and Sampaio, R. (2014). The maxi-
mum time of 2-neighbour bootstrap percolation: Complexity results. In
WG’2014 Graph-Theoretic Concepts in Computer Science, volume 8747 of
LNCS Lecture Notes in Computer Science, pages 372–383.

[24] Marcilon, T. and Sampaio, R. (2015). The maximum time of 2-neighbour
bootstrap percolation in grid graphs and parameterized complexity results.
In WG’2015 Graph-Theoretic Concepts in Computer Science, LNCS Lec-
ture Notes in Computer Science.

[25] Tarjan, R. E. (1985). Decomposition by clique separators. Discrete
mathematics, 55(2):221–232.

[26] van de Vel, M. L. (1993). Theory of convex structures, volume 50. Else-
vier.

[27] Whitesides, S. H. (1981). An algorithm for finding clique cut-sets. In-
formation Processing Letters, 12(1):31–32.

20


