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Abstract

A (proper) k-coloring of a graph G = (V,E) is a function c : V (G)→ {1, . . . , k}
such that c(u) 6= c(v) for every uv ∈ E(G). Given a graph G and a spanning
subgraph H of G, a circular q-backbone k-coloring of (G,H) is a k-coloring
c of G such that q ≤ |c(u) − c(v)| ≤ k − q for every edge uv ∈ E(H). The
circular q-backbone chromatic number of (G,H), denoted by CBCq(G,H), is
the minimum integer k for which there exists a circular q-backbone k-coloring
of (G,H).

The Four Color Theorem implies that if G is planar, we have CBC2(G,H) ≤
8. It is conjectured that this upper bound can be improved to 7 when H is a
tree, and to 6 when H is a matching. In this work, we present some partial
results towards these bounds.

We first prove that if G is planar containing no C4 as subgraph and H is a
linear spanning forest of G, then CBC2(G,H) ≤ 7. Then, we show that if G
is a plane graph having no two 3-faces sharing an edge and H is a matching of
G, then CBC2(G,H) ≤ 6. Finally, we decrease the bound and show that if G
is a planar graph having no C4 nor C5 as subgraph and H is a mathing of G,
then CBC2(G,H) ≤ 5. Our results partially answer some questions raised by
the community. In particular, the proofs use the Discharging Method, and this
fact answers questions about whether one could prove such bounds for planar
graphs without using the Four Color Theorem.

Keywords: Graph Coloring, Circular Backbone Coloring, Matching, Planar
Graph, Steinberg’s Conjecture.

1. Introduction

For basic notions and terminology on Graph Theory, the reader is referred
to [1]. In this text, we only consider simple graphs.

Let G = (V,E) be a graph. Given a positive integer k, we denote the set
{1, · · · , k} by [k]. A (proper) k-coloring of G is a function c : V (G)→ [k] such
that c(u) 6= c(v) for every edge uv ∈ E(G). We say G is k-colorable if there
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exists a k-coloring of G. The chromatic number of G, denoted by χ(G), is the
smallest k for which G is k-colorable. We say G is k-chromatic if χ(G) = k.
The Vertex Coloring Problem consists of determining χ(G), for a given
graph G.

Among many practical problems that can be modeled using graph colorings,
frequency assignment problems are perhaps the most famous ones [2]. There
are several variations of the Vertex Coloring Problem that were defined in
order to model the specific constraints of the practical applications related to
frequency assignment in networks. In this context, the Backbone Coloring
Problem was defined by Broersma et al. [3, 4] to model the situation where
certain channels of communication are more demanding than others.

Formally, given a graph G, a spanning subgraph H of G, called the backbone
of G, and two positive integers q and k, a q-backbone k-coloring of (G,H) is
a k-coloring c of G for which |c(u) − c(v)| ≥ q for every uv ∈ E(H). The q-
backbone chromatic number of (G,H), denoted by BBCq(G,H), is the minimum
k for which there exists a q-backbone k-coloring of (G,H). The Backbone
Coloring Problem consists of determining BBCq(G,H). In this work, we
focus on the case q = 2 and thus we usually omit q from the notation.

In their seminal article, Broersma et al. observe that

BBC(G,H) ≤ 2 · χ(G)− 1. (1)

This can be easily seen by considering a proper coloring of G that uses only the
(χ(G)) odd colors of the set [2 · χ(G)− 1]. Note that, thanks to the Four Color
Theorem [5, 6], whenever G is a planar graph and H is any spanning subgraph
of G, we have that 7 is an upper bound for the backbone chromatic number of
(G,H). However, when H is a spanning tree of G, Broersma et al. conjecture
that this upper bound is actually equal to 6, and they show that this would be
best possible [4].

Conjecture 1 ([4]). If G is a planar graph and T is a spanning tree of G, then

BBC(G,T ) ≤ 6.

In the literature, the only result approaching directly this conjecture shows
that it holds whenever T has diameter at most 4 [7].

The authors in [8, 9] consider a more restricted version of the Backbone
Coloring Problem, where the color space is “circular”, i.e., it behaves as Z/kZ,
where k is the total number of colors. For the remainder of this paper we
are concerned only with this “circular case”. In particular, whenever we add
or shift colors, we do so module k (where k is the number of colors that are
being used). We also focus only on the case where q = 2. More formally,
given a graph G and a spanning subgraph H of G, a circular 2-backbone k-
coloring of (G,H) is a function c : V (G) → [k] such that, for any edge uv of
H, we have |c(u)− c(v)| ≥ 2 (as before) and additionally {c(u), c(v)} 6= {1, k}.
This condition is equivalent to the expression: 2 ≤ |c(u) − c(v)| ≤ k − 2 for
every uv ∈ E(H). (For general q, the circular backbone condition is given by
q ≤ |c(u) − c(v)| ≤ k − q for every edge uv of H). The circular 2-backbone
chromatic number of (G,H), denoted by CBC2(G,H) or simply CBC(G,H), is
the smallest k for which there exists a circular 2-backbone k-coloring of (G,H).
In order to simplify the notation, we often write CBC-k-coloring instead of
circular 2-backbone k-coloring.
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Note that any CBC-k-coloring of (G,H) is also a backbone k-coloring of
(G,H), and, conversely, if c is a backbone k-coloring of (G,H), then it can also
be seen as a CBC-(k + 1)-coloring of (G,H). Therefore we get:

BBC(G,H) ≤ CBC(G,H) ≤ BBC(G,H) + 1. (2)

The following weaker circular version of Conjecture 1 is also open:

Conjecture 2. If G is a planar graph and T is a spanning tree of G, then

CBC(G,T ) ≤ 7.

One may observe that a graph G whose chromatic number is k, satisfies
CBC(G,H) ≤ 2k, by combining inequalities (1) and (2). In general, this is best
possible as, for G = H, one can easily check that CBC(G,G) = 2χ(G).

Steinberg conjectured that every planar graph G having no C4 or C5 as
subgraph satisfies χ(G) ≤ 3 [10]. This famous conjecture was very recently
disproved by Cohen-Addad, Hebdige, Kral, Li, and Salgado [11]. However, we
may still hope that the following weaker version of the conjecture is true.

Conjecture 3. If G is a planar graph having no C4 or C5 as subgraph and H
is a spaning tree of G, then CBC(G,H) ≤ 6.

The case where the backbone graph is a matching has also been considered
in the literature. It has been proved, using the Four Color Theorem, that
BBC(G,M) ≤ 6 whenever G is a planar graph and M is a matching in G,
and that this upper bound cannot be improved to 4 [12]. Then, the following
questions are posed:

Question 1. Let G be a planar graph and M be a matching in G. Is it possible
to prove BBC(G,M) ≤ 6 without using the Four Color Theorem?

Question 2. Let G be a planar graph and M be a matching in G. Does
BBC(G,M) ≤ 5 hold?

In this paper, we prove particular cases of Conjectures 2 and 3, and give
a partial answer to Question 1 and to the circular version of Question 2. We
describe our results in the following subsections.

1.1. Matching Backbones

Recall that in the definition of backbone colorings, the backbone H of a
graph G is a spanning subgraph of G. By definition, a matching M is only a set
of independent edges of G. With a slight abuse of notation, whenever we refer
to a matching M as backbone of a graph G, we mean the subgraph of G whose
vertex set is equal to V (G) and whose edge set is M . In fact, any subgraph H
of G may be thought as the backbone H̃ = (V (G), E(H)), as adding isolated
vertices to H does not impose any extra conditions on the colorings.

It is known that if G is a 3-colorable graph and M is a matching of G, then
BBC(G,M) ≤ 4 [12]. Combining this result with inequality (2), we observe that
if Steinberg’s Conjecture were true, it would trivially imply that CBC(G,M) ≤
5, whenever G is a planar graph without cycles of length 4 or 5, and M is
a matching of G. We prove that this bound holds, regardless of Steinberg’s
Conjecture being false. This proves a weaker version of Conjecture 3 and gives
a partial answer to Question 2.
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Theorem 4. If G is a planar graph without cycles of length 4 or 5 as subgraph,
and M is a matching of G, then CBC(G,M) ≤ 5.

The following theorem partially answers Question 1 and the circular version
of Question 2. Recall that a plane G is a planar graph G together with a given
embedding of G in the plane. We say that two faces of a plane graph G are
adjacent if they have an edge in common.

Theorem 5. If G is a (simple) plane graph with no adjacent 3-faces and M is
a matching of G, then CBC(G,M) ≤ 6.

Although our result restricts the class of graphs when compared to the result
presented in [12], it is stronger on this restricted class since we deal with circular
backbone colorings instead. We emphasize that our result also points to a
positive answer to the question about whether BBC(G,M) ≤ 5, and that our
proof does not use the Four Color Theorem.

1.2. Linear Forest Backbones

Our main result concerns a more general backbone. A forest is called linear
if each of its components are paths.

In [13], Araújo et al. investigate CBC(G,F ) when F is a forest. They prove
that if G is a planar graph with no cycles of length 4 or 5, then CBC(G,F ) ≤ 7
whenever F is a spanning forest of G, and that CBC(G,F ) ≤ 6, whenever F
is a spanning linear forest of G [13]. Observe that their results partially solve
Conjectures 2 and 3.

Our last result is similar to theirs in nature, but we consider only the case
where the backbone H is a linear forest.

Theorem 6. If G is a planar graph without cycles of length 4 as subgraph, and
F is a (spanning) linear forest of G, then CBC(G,F ) ≤ 7.

Note that, in the Theorem 6, G is allowed to have a C5 as subgraph, but we
are allowed to use an extra color compared to the result in [13]. However, this
was expected since our efforts were done towards an answer to Conjecture 2.

The remainder of this text is organized as follows: in Section 2, we intro-
duce some notation and state known results. In Sections 3, 4 and 5, we prove
Theorems 4, 5 and 6, respectively.

2. Preliminaries

We prove all theorems of this paper (Theorems 4, 5 and 6) by contradiction,
considering the existence of a minimal counterexample and using the Discharg-
ing Method. Let us first properly define what minimal means in this context.

In all proofs, we consider the following partial order defined over the set of
pairs of graphs (G,H) such that H is a spanning subgraph G. For such a pair,
we write (G′, H ′) � (G,H), whenever G′ ⊆ G, H ′ ⊆ H and H ′ is a spanning
subgraph of G′. When (G′, H ′) � (G,H), we call (G′, H ′) a subpair of (G,H).
We say that (G′, H ′) is a proper subpair of (G,H) if it is a subpair of (G,H)
such that G′ ⊂ G or H ′ ⊂ H (or both).

All our theorems state that CBC(G,H) ≤ k, for pairs (G,H) satisfying a
given condition and a particular positive integer k. We say that a pair (G,H) is
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k-minimal when CBC(G,H) > k and CBC(G′, H ′) ≤ k for every proper subpair
(G′, H ′) of (G,H).

A k-minimal counterexample to one of our theorems is simply a k-minimal
pair which is also a counterexample to the theorem. Since the hypothesis in
each of Theorems 4, 5 and 6 are monotone, whenever there is a counterexample
to the statement CBC(G,H) ≤ k, there is also a k-minimal counterexample.
We may omit the number k when it is clear in the context.

In most proofs of ours auxiliary results, given a k-minimal counterexample
(G,H), we get a contradiction by extending a CBC-k-coloring of a subpair
(G′, H ′) to a CBC-k-coloring of (G,H).

We shall use the following lemma that was presented in [13]. Since the proof
is short and illustrates the idea above, we also show it here. Notice that in this
lemma, the pair (G,H) does not need to be a counterexample to any of the
theorems.

Lemma 7 (Lemma 16 in [13]). If (G,H) is k-minimal, then for every u ∈ V (G),
we have that dG(u) + 2dH(u) ≥ k.

Proof. Assume, for a contradiction, that there is a vertex u of G such that
dG(u) + 2dH(u) < k. Consider a CBC-k-coloring of (G−u,H−u), which exists
by the minimality of (G,H). One can see that trying to extend this coloring to
a CBC-k-coloring of G, at most dG(u) + 2dH(u) colors are forbidden for u. As
dG(u)+2dH(u) < k, there is a color available for u and the extension is feasible.
Therefore, (G,H) admits a CBC-k-coloring, and this contradicts the fact that
(G,H) is k-minimal.

As we shall use the above argument many times, it is convenient to introduce
the following notation.

If ψ is a coloring of a graph G and S ⊆ V (G), then denote by ψ(S) the set
{ψ(u) : u ∈ S}. Given c ∈ [k], we denote by 〈c〉 the set {d ∈ [k] : |c − d| ≤
1 or |c− d| ≥ k − 1}. This is equivalent to work with colors in Zk = Z/kZ and
set 〈c〉 = {c − 1, c, c + 1} module k. Finally, we denote the power set of [k] by
2[k].

Given a pair (G,H) and a subgraph G′ ⊂ G, consider the backbone H ′ of G′

such that H ′ = (V (G′), E(G′)∩E(H)). For a CBC-k-coloring ψ of the subpair
(G′, H ′) and a vertex u ∈ V (G) \V (G′), we define the set of available colors for
u in ψ as the set of colors that can be used in u to extend ψ to a CBC-k-coloring
of the pair (G′ ∪ {u}, H ′ ∪ {u}). (Here the subgraph G′ ∪ {u} includes all edges
of G from u to V (G′) and H ′ ∪ {u} includes all edges of H from u to V (G′)).
More precisely, we set:

Aψ(u) = [k] \
(
ψ
(
NG(u) ∩ V (G′)

)
∪
(⋃{

〈ψ(x)〉 : x ∈ NH(u) ∩ V (G′)
}))

.

Also, we denote |Aψ(u)| by aψ(u). We will also write only Aψ to represent the
function Aψ : V (G) \ V (G′)→ 2[k] that we have just defined.

In Sections 3 and 4, where the backbone is a matching, we will use the
following straight consequence of Lemma 7.

Proposition 8. Let (G,M) be a k-minimal pair in which k ≥ 4 and M is a
matching. The following statements hold.

1. δ(G) ≥ k − 2.
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2. If dG(u) = k− 2, then there is w ∈ V (G) such that uw ∈M and dG(w) ≥
k.

Proof. By Lemma 7, since dM (u) ≤ 1, we get that dG(u) ≥ k − 2 for every u ∈
V (G). This immediately proves statement 1. By the same argument, if dG(u) ≤
k − 1, we must have dM (u) = 1. In particular, assuming that dG(u) = k − 2,
there must be some w ∈ V (G) such that uw ∈ M . By contradiction, suppose
that dG(w) ≤ k−1. Let ψ be a CBC-k-coloring of (G−u−w,M−u−w) (which
exists by the minimality of (G,M)). Note that |NG(u)∩ V (G− u− v)| = k− 3
and |NM (u) ∩ V (G − u − v)| = 0, therefore aψ(u) ≥ 3. Similarly, aψ(w) ≥ 2.
From this, it is easy to conclude that there exists a color c ∈ Aψ(w) such that
Aψ(u) \ 〈c〉 6= ∅. This implies that ψ can be extended to a CBC-k-coloring of
(G,M), a contradiction.

Finally, if G is a plane graph, then denote by F (G) the set of faces of G.
If a face f ∈ F (G) has degree i, we say that f is an i-face and that |f | = i.
Denote by Fi(G) the set of faces of degree i and set fi(G) = |Fi(G)|. Moreover,
if u ∈ V (G), then we say that FGi (u) is the set of faces of degree i containing
u in G. Similarly, we denote |FGi (u)| by fGi (u). We often omit G from these
notations when it is clear from the context.

3. Matching backbones on planar graphs with no C4 nor C5

The goal of this section is to prove Theorem 4, which is restated below:

Theorem 4. If G is a planar graph without cycles of length 4 or 5 as subgraph,
and M is a matching of G, then CBC(G,M) ≤ 5.

In order to do so, the only extra information we need is given by the following
result from [13].

Lemma 9 ([13]). Let G be a plane graph without cycles of length 4 or 5 such
that G 6= K3. Then, ∑

v∈V (G)

(dG(v)− 3) ≤ 3f3(G)

2
− 6. (3)

Now, we may proceed to the proof of the main result of this section.

Proof of Theorem 4. Let (Ĝ, M̂) be a 5-minimal counterexample to Theorem 4,

i.e., Ĝ is a plane graph having no C4 or C5 as subgraph, M̂ is a matching of
G, CBC(Ĝ, M̂) ≥ 6 and CBC(G′,M ′) ≤ 5 for every proper subpair (G′,M ′) of

(Ĝ, M̂). Clearly, Ĝ 6= K3.

We shall use the Discharging Method to show that Ĝ does not satisfies equa-
tion (3), contradicting the statement of Lemma 9. Therefore, such a minimal
counterexample cannot exist. By Proposition 8 (with k = 5), we already have

a simple structural result about Ĝ. We have that

1. δ(Ĝ) ≥ 3, and

2. if dĜ(u) = 3, then there is u∗ ∈ V (Ĝ) such that uu∗ ∈ M̂ and dĜ(u∗) ≥ 5.
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For the remainder, we will use only d(u) to denote dĜ(u).

We now proceed to the Discharging Method. Take any embedding of Ĝ in the
plane. We attribute charges to every vertex, and every face of this embedding.
Give charge dĜ(v) − 3 for every vertex v ∈ V (Ĝ), charge − 3

2 for every face

f ∈ F3(Ĝ), and charge 0 to every other face. In the sequel, we redistribute

these charges between vertices and faces of Ĝ in such a way that, at the end,
each vertex and each face has nonnegative charge while the total sum of the
charges does not change. Because of this, we conclude that

∑
v∈V (Ĝ)

(dĜ(v)− 3)− 3f3(Ĝ)

2
≥ 0,

and this contradicts Lemma 9.
In order to redistribute the charges, we apply the following discharging rules:

Rule 1. For each u ∈ V (Ĝ) such that d(u) = 3, send charge 1
2 from u∗ to u.

Rule 2. For each vertex u ∈ V (Ĝ) and each face f ∈ F3(u), send charge 1
2

from u to f .

We emphasize that our discharging procedure first applies Rule 1 (simulta-
neously) to all vertices u, and only afterwards it applies Rule 2 (simultaneously)
to all faces of F3(G). Note that the charge of every face not in F3(G) remains
zero.

For each x ∈ V (Ĝ) ∪ F3(Ĝ), denote by µ0(x), µ1(x), µ2(x) the charge of x
before Rule 1 has been applied, before Rule 2 has been applied, and after Rule 2
has been applied, respectively. Recall that µ0(u) = d(u)−3 for every u ∈ V (Ĝ),

and µ0(f) = − 3
2 for every f ∈ F3(Ĝ). Because M̂ is a matching, no vertex

sends charge to more than one other vertex, and the condition on the degree of
the vertices u∗ imply that:

• If d(u) = 3, then µ1(u) = 1
2 ;

• If d(u) = 4, then µ1(u) = µ0(u) = 1; and

• If d(u) ≥ 5, then

µ1(u) ≥ µ0(u)− 1

2
=

2d(u)− 7

2
.

Moreover, no face changes its charge by Rule 1, so µ1(f) = µ0(f) for every face

f ∈ F3(Ĝ). Let u be any vertex. Note that, since Ĝ has no cycles of length 4,

no two faces in F3(Ĝ) can share an edge. This implies that f3(u) ≤ bd(u)2 c.
One can verify, for each of the previous cases on d(u), that µ1(u) ≥ 1

2b
d(u)
2 c.

Therefore, µ1(u) ≥ f3(u)
2 . This means that after sending charge 1/2 to each

f ∈ F3(u), the vertex u still has non-negative charge, i.e., µ2(u) ≥ 0. On the

other hand, each f ∈ F3(Ĝ) receives 1/2 units of charge from each vertex in f ,
thus we have that µ2(f) = µ1(f) + 3/2 = µ0(f) + 3/2 = 0. This finishes the
proof of Theorem 4.
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4. Matching backbones on plane graphs with no adjacent 3-faces

In this section, we consider a plane graph G. We still have a matching M
as backbone, however we weaken the constraints on the structure of G. On the
other hand, we need an extra color compared to the main result in the previous
section. Let us restate our result here.

Theorem 5. If G is a plane graph with no adjacent 3-faces and M is a matching
of G, then CBC(G,M) ≤ 6.

In order to prove Theorem 5, we need to study in more details the structure
of a hypothetical minimal counterexample for it. Consequently, we need to
introduce some extra notation.

Let G be a plane graph and G∗ be its dual. Recall that F3(G) is the set of
faces of degree 3 in G, so it is as well the set of vertices of degree 3 in G∗. We
denote the graph G∗ − F3 by G∗4, i.e., the subgraph of G∗ induced by faces of
degree (in G∗) at least 4 . We say that a component of G∗4 is an island of G.
In other words, an island of G is a maximal set of faces of G that have degree
at least four and form a connected component in the dual. Moreover, if H is
an acyclic component of G∗4 such that dG∗(f) = 4 for every f ∈ V (H), then we
say that H is a bad island of G. We denote the set of bad islands of G by Γ(G)
and we let γ(G) denote |Γ(G)|.

Let f ∈ F3(G) and H be an island of G. We say that f is adjacent to H, or
f shares an edge with H, if there exists a face f ′ ∈ V (H) such that f and f ′ are
adjacent. Also, we denote by Γ(G, f) the set of bad islands that are adjacent to
f in the plane graph G.

Lemma 10. Let G be a plane graph with no two adjacent 3-faces. Then

3f3(G) + f4(G) ≤ |E(G)|+ γ(G).

Proof. Let E3 = {e ∈ E(G) : e is in the boundary of some face of degree 3}
and E3 = E(G) \ E3. Observe that |E3| = 3f3(G), because G has no two faces
of degree 3 sharing an edge. In the sequel, we prove that |E3| ≥ f4(G)− γ(G).
This implies Lemma 10, as |E(G)| = |E3|+ |E3|.

Note that if e ∈ E3, then the edge e∗ corresponding to e in the dual G∗

belongs to G∗4. Conversely, any edge e∗ ∈ E(G∗4), corresponds to an edge e ∈
E(G) that does not belong to the boundary of any face in F3(G). Hence, e ∈ E3.
Therefore, |E3| = |E(G∗4)|. Let i(G∗4) be the number of acyclic components of G∗4
(by definition, this is the number of islands of G). Finally, because the number
of edges in any graph is at least its number of vertices minus the number of
acyclic components of the graph, we get:

|E3| = |E(G∗4)| ≥ |V (G∗4)| − i(G∗4).

Also, note that
|V (G∗4)| − f4(G) ≥ i(G∗4)− γ(G),

as in every island that is not a bad island we must have at least one vertex of
G∗4(G) that has degree at least 5 (and therefore has not been counted on f4(G)).
Rearranging the terms we get |E3| ≥ f4(G)− γ(G) as we wanted.
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Lemma 11. Let G be a plane graph with no two adjacent 3-faces. Then,∑
v∈V (G)

(dG(v)− 5) + f3(G)− γ(G) ≤ −10.

Proof. We compute
∑
f∈F (G)(|f | − 5) in two different ways. First notice that

∑
f∈F (G)

(|f | − 5) =

∞∑
k=3

(k − 5)fk(G) ≥ −2f3(G)− f4(G)

≥ −|E(G)| − γ(G) + f3(G), (4)

where we used Lemma 10 to obtain the last inequality.
On the other hand,∑

f∈F (G)

(|f | − 5) =
∑

f∈F (G)

(|f |)− 5|F (G)| = 2|E(G)| − 5|F (G)|. (5)

Combining inequalities (4) and (5) with Euler’s Formula, we obtain:

2|E(G)| − 5(2− |V (G)|+ |E(G)|) ≥ −|E(G)| − γ(G) + f3(G),

and therefore
2|E(G)| − 5|V (G)| − γ(G) + f3(G) ≤ −10.

This clearly implies the Lemma 11.

Next, we use the Discharging Method to argue that the existence of a coun-
terexample to Theorem 5 contradicts Lemma 11.

Proof of of Theorem 5. By contradiction, let (Ĝ, M̂) be a 6-minimal counterex-

ample to Theorem 5. This means that Ĝ is a plane graph having no two adjacent
3-faces, M̂ is a matching of Ĝ, CBC(Ĝ, M̂) ≥ 7 and CBC(G′,M ′) ≤ 6 for every

proper subpair (G′,M ′) of (Ĝ, M̂).
As in the previous section, Proposition 8 (now with k = 6) implies the

following immediate structural result for (Ĝ, M̂).

1. δ(Ĝ) ≥ 4.

2. If dĜ(u) = 4, then there is u∗ ∈ V (Ĝ) such that uu∗ ∈ M̂ and dĜ(u∗) ≥ 6.

We now assign charges to vertices, faces and islands of Ĝ. We assign charge
dĜ(v)−5 to each vertex v ∈ V (Ĝ), charge 1 to each face f ∈ F3(Ĝ), and charge

−1 to each bad island b ∈ Γ(Ĝ) (and zero to everything else). Our goal is to
prove that the sum of all these charges, that is,∑

v∈V (Ĝ)

(dĜ(v)− 5) + f3(Ĝ)− γ(Ĝ),

is non-negative. Observe that this is a direct contradiction to Lemma 11.
In order to achieve this goal, we apply the following discharging rules to

redistribute the charges (without changing their total sum). We claim that after

applying such rules, every vertex, face and island of Ĝ ends with a non-negative
charge.
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Rule 1. For each f ∈ F3(Ĝ), send charge 1
3 from f to each b ∈ Γ(Ĝ, f).

Rule 2. For each u ∈ V (Ĝ) such that dĜ(u) = 4, send charge 1 from u∗ to u.

In this particular proof, the rules could be applied in any order since the first
rule only discharges from faces to islands, while the second only does between
vertices. But in order to analyze their effects, we will assume that we first
apply Rule 1 as far as possible and later we apply Rule 2 as far as possible.
Clearly, any face that is not in F3(Ĝ) and any island that is not bad ends up
with non-negative charge.

For each x ∈ V (Ĝ)∪F3(Ĝ)∪ Γ(Ĝ), let µ0(x), µ1(x), µ2(x) denote the initial
charge of x, the charge of x after Rule 1 is applied to all faces, and the charge of
x after Rule 2 is applied to all vertices, respectively. Recall that µ0(v) = d(v)−5

for every v ∈ V (Ĝ); µ0(f) = 1 for every f ∈ F3(Ĝ); and µ0(b) = −1 for every

b ∈ Γ(Ĝ).

First observe that, since M̂ is a matching and by the conditions on δ(Ĝ) and

dĜ(u∗), we get that µ1(v) ≥ 0 for every v ∈ V (Ĝ).
It remains only to prove that each bad island also ends with a non-negative

charge. So, consider a bad island H of Ĝ, i.e., H is an acyclic component of Ĝ∗4
such that such that dĜ∗(f) = 4 for every f ∈ V (H). Assume first that V (H)

is a singleton, say V (H) = {f}. Each face of degree 3 in Ĝ shares at most

two edges with f . However, because two faces of degree 3 in Ĝ intersect each
other in at most one vertex, we get that f is adjacent to at least three faces of
F3(Ĝ). If |V (H)| ≥ 2, then H has at least two leafs; as before, we get that H

is adjacent to at least three distinct faces of F3(Ĝ). In any case, we get that

y = |{f ∈ F3(Ĝ) : H ∈ Γ(Ĝ, f)}| ≥ 3, which implies that µ2(H) = µ1(H) =
µ0(H) + y/3 ≥ 0.

5. Linear Forest Backbone

In this section, we prove Theorem 6. Let us recall its statement.

Theorem 6. If G is a planar graph without cycles of length 4 as subgraph, and
F is a linear spanning forest of G, then CBC(G,F ) ≤ 7.

We use the same general strategy, but the structural properties needed here
are more complex. In the previous sections, the very simple Proposition 8, whose
proofs considered the removal of only two vertices of a minimal counterexample,
was enough to guarantee a structure in which we could apply the Discharging
Method. Here, the backbone H is a linear forest and we shall need to remove
entire subpaths from a minimal counterexample (G,H). To extend a coloring
ψ of a subpair of (G,H) to a coloring of (G,H), we shall need to work with the
lists Aψ in a more clever way. Let us start by proving some tool lemmas in the
next subsection.

5.1. Forbidden substructures in a minimal counterexample

In order to do the extension of a coloring of a subpair to a coloring of
the pair, it is convenient to work with list colorings instead of usual colorings.
Let (G,H) be such that H is a backbone of G, k be a positive integer, and
L : V (G) → 2[k] be a function that associates to each vertex a list of colors.
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If there exists a CBC-k-coloring ψ of (G,H) such that ψ(v) ∈ L(v), for all
v ∈ V (G), then we say that ψ is an L-CBC-k-coloring of (G,H) and that
(G,H) is L-CBC-k-colorable. Throughout the proof, we often consider a worst-
case scenario and suppose |L(v)| to be as small as possible in the context for
every vertex v ∈ V (G). This is not a problem since whenever (G,H) is L-CBC-
k-colorable and L′ is such that L(v) ⊆ L′(v) for every v ∈ V (G), we also have
that (G,H) is L′-CBC-k-colorable.

We use the reduction rule below to eventually prove that certain substruc-
tures are forbidden in a 7-minimal counterexample to Theorem 6.

Consider a pair (H,P ) such that |V (H)| ≥ 2 and P is a Hamiltonian path of
H. Let us write P as (v1, . . . , vn). Also, let L : V (H)→ 2[7] be a list assignment
for H, and L′ : V (H ′)→ 2[7] be a list assignment for some H ′ ⊆ H. We denote
the values |L(x)| and |L′(x)| by `(x) and `′(x), respectively.

Reduction Rule: given that P is a Hamiltonian path of H, we say that
((H ′, P ′),L′) is a reduction of ((H,P ),L) on v1 if all the following conditions
hold:

(i) H ′ = H − v1,

(ii) P ′ = P − v1,

(iii) `′(v2) ≥ `(v2)− 2,

(iv) `′(x) ≥ `(x)− 1 for every x ∈ NH(v1) \ {v2},

(v) `′(x) = `(x) for every x ∈ V (H ′) \NH(v1), and

(vi) If L(v2) \ L′(v2) = {c, d}, then |〈c〉 ∪ 〈d〉| ≤ 5.

We say that a reduction ((H ′, P ′),L′) of ((H,P ),L) on v1 is reversible if
every L′-CBC-k-coloring of (H ′, P ′) can be extended to an L-CBC-k-coloring
of (H,P ).

The following lemma gives a sufficient condition depending only on the struc-
ture of the list and the degree of the removed vertex (v1) for ((H,P ),L) to have
an reversible reduction.

Lemma 12. Let H be any graph, P = (v1, . . . , vn) be a Hamiltonian path of
H, and consider L : V (H)→ 2[7]. If the conditions below hold, then ((H,P ),L)
has an reversible reduction on v1.

1. dH(v1) ≤ 4;

2. `(v1) ≥ 1 + dH(v1); and

3. If dH(v1) = 4, and c and d are the colors not in L(v1), then |〈c〉∪〈d〉| ≤ 5.

Proof. In each case of this proof, we present an reversible reduction ((H ′, P ′),L′)
of ((H,P ),L) on v1. In all cases, we have H ′ = H − v1 and P ′ = P − v1.
Thus, we just need to present the list assignment L′ in each step satisfying
Statements (iii)-(vi) and in such a way that any L′-CBC-7-coloring of (H ′, P ′)
can be extended to a L-CBC-7-coloring of (H,P ).

Without loss of generality, suppose that `(v1) = 1 + dH(v1). First, suppose
that dH(v1) = 1. If L(v1) has two consecutive colors, say c and c+ 1, for some
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c ∈ [7], then set L′(v2) = L(v2) \ {c, c + 1}. If L(v1) = {c − 1, c + 1} for some
c ∈ [7], then set L′(v2) = L(v2)\{c}. Otherwise, let L′(v2) = L(v2). Finally, let
L′(x) = L(x) for every x ∈ V (H)\{v1, v2}. One can see that ((H−v1, P−v1),L′)
is a reduction of ((H,P ),L) on v1. Let us argue that any L′-CBC-7-coloring
of (H − v1, P − v1) can be extended to an L-CBC-7-coloring of (H,P ). If no
such coloring exists, then the lemma holds by vacuity. Otherwise, let ψ be an
L′-CBC-7-coloring of (H − v1, P − v1). By the choice of L′ in each case, note
that L(v1) \ 〈ψ(v2)〉 6= ∅, and as v2 is the only neighbor of v1 (even in H) this
means that ψ can be extended to v1.

Now, consider dH(v1) > 1. First, suppose that there exists c ∈ L(v1) such
that {c−1, c+1}∩L(v1) = ∅. Let L′ be obtained by removing c−1 and c+1 from
L(v2), and c from L(x) for every x ∈ N(v1)\{v2}. Then ((H−v1, P −v1),L′) is
a reduction of ((H,P ),L) on v1, and we want to show that it is reversible. So let
ψ be an L′-CBC-7-coloring of (H−v1, P −v1), and let F = ψ(N(v1))∪〈ψ(v2)〉,
the set of colors that are forbidden for v1. If ψ(v2) 6= c, we can color v1 with c.
Otherwise, we get |L(v1) ∩ 〈ψ(v2)〉| = 1, which implies that

|L(v1)∩F | ≤ |L(v1)∩ψ(N(v1) \ {v2})|+ |L(v1)∩ 〈ψ(v2)〉| ≤ d(v1)− 1 + 1. (6)

Since `(v1) = dH(v1)+1, there is a color in L(v1)\F with which we can color v1.
Finally, suppose that

{c− 1, c+ 1} ∩ L(v1) 6= ∅, for every c ∈ L(v1). (?)

Because 2 ≤ dH(v1) ≤ 4 and `(v1) = d(v1) + 1, we have that 3 ≤ `(v1) ≤ 5.
By (?) and the fact that we have 7 colors in total, there is a color c such
that c /∈ L(v1) and {c + 1, c + 2} ⊆ L(v1). Without loss of generality, assume
c = 7, so that {1, 2} ⊂ L(v1) and that 7 /∈ L(v1). We claim that we can
also suppose (without loss of generality) that 6 /∈ L(v1). Assume otherwise; by
(?) we get that {1, 2, 5, 6} ⊆ L(v1). If {3, 4} ∩ L(v1) = ∅, then we rotate the
colors so that 1 coincides with 5 and the desired property holds. Otherwise,
we get a contradiction to Condition 3 of Lemma 12, since |〈c〉 ∪ 〈7〉| = 6 where
c ∈ {3, 4} \ L(v1). Now, let L′ be obtained by removing 1 from L(vi) for every
vi ∈ N(v1) \ {v2}, and 1 and 2 from L(v2), and let ψ be an L′-CBC-7-coloring
of (H − v1, P − v1). If ψ(v2) 6= 7, we can color v1 with 1. Otherwise, since
{6, 7}∩L(v1) = ∅, we get |〈ψ(v2)〉 ∩L(v1)| = 1 and, again by inequality (6), we
get that there must exist a color in L(v1) with which we can color v1.

The sketch of the proof of Theorem 6 goes as follows. For the rest of this
section we consider a planar graph G with no cycles of length 4, a spanning
linear forest F of G, and assume that (G,F ) is a minimal counterexample to
Theorem 6. We will further assume that F has a component that contains a
subpath P with a particular set of properties (described latter). We know that,
by minimality of (G,F ), there exists a CBC-7-coloring ψ of (G− P, F − P ). In
order to get a contradiction, it is enough to prove that there exists a Aψ-CBC-
coloring of (G[V (P )], P ), as by the definition ofAψ such a coloring extends ψ to a
CBC-7-coloring of (G,F ). For that aim, using the properties of P , we prove that
we may iteratively apply Lemma 12 starting with the pair ((G[V (P )], P ), Aψ)
until the reduced graph and path become a single vertex, and we show that
the resulting list of colors available for such vertex shall have size at least one.
This contradiction ensures that there can be no path P with such particular
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set of properties in a minimal counterexample. Finally, we use this structural
information about subpaths of F to define our discharging rules.

The next lemma gives some trivial structural information about a minimal
couterexample to Theorem 6.

Lemma 13. Let (G,F ) be a minimal counterexample to Theorem 6. Then, we
have δ(G) ≥ 3, and if v ∈ V (G) is such that dG(v) ≤ 4, then dF (v) = 2.

Proof. This lemma follows easily from Lemma 7 (with k = 7) together with the
fact that F is a linear forest (and so every vertex has degree at most 2 in F ).

Before we present the types of paths that cannot occur in F (where (G,F )
is defined as above), we need a further definition. Let C be a component of
F . If P is a maximal subpath of C containing only vertices of degree (in G) at
most 5, we say that P is a heavy subpath of C.

The next lemma, combined with Lemma 13, says that a heavy subpath can
have only vertices of degree 5, except for either at most one vertex of degree 3
or at most two vertices of degree 4, and those exceptions cannot be a leaf of F .

Lemma 14. Let (G,F ) be a minimal counterexample to Theorem 6, and P be
a heavy subpath of a component of F . All the following hold:

(a) If P contains a leaf of F , then dG(u) = 5, for all u ∈ V (P );

(b) If P has one vertex v of degree 3, then dG(u) = 5, for all u ∈ V (P ) \ {v};

(c) P has at most two vertices of degree 4.

Proof. Below, we consider a subpath Q of P , and denote by H the subgraph
G[V (Q)]. We prove that whenever P does not satisfy one of the assertions,
then, letting ψ be any CBC-7-coloring of (G − H,F − H) (that exists by the
minimality of (G,F )), we get that (H,Q) is Aψ-CBC-colorable, contradicting
the fact that (G,F ) is a minimal counterexample to Theorem 6. We recall that,
by Lemma 13, we have δ(G) ≥ 3 and dG(u) ≥ 5 whenever dF (u) ≤ 1.

First, suppose that either (a) or (b) does not hold, and let Q = (v1, v2, . . . , vq)
be a shortest subpath of P such that q ≥ 2, d(v1) ≤ 4, and either d(vq) = 3 or
vq is a leaf in P . Note that by definition of Q, the degree (in G) of any other
vertex of Q is equal to 5. Let ψ be any CBC-7-coloring of (G−H,F −H). For
i ∈ {1, . . . , q}, let Qi = (vi, . . . , vq) and Hi = H[{vi, . . . , vq}].

We also let A1 = Aψ and for 1 ≤ i ≤ q − 1 we shall use Lemma 12 to
obtain Ai+1 such that we have a reversible reduction of ((Hi, Qi), Ai) on vi to
((Hi+1, Qi+1), Ai+1). For shortness, we denote ((Hi, Qi), Ai) by Ri. In order
to do that, we need to guarantee that the conditions to apply Lemma 12 are
satisfied. For that aim, we show (inductively on i) that the following inequalities
hold.

`i(vj) ≥ dHi(vj) + 2, for every j such that i < j < q. (7)

`i(vi) ≥ dHi
(vi) + 1, if i < q. (8)

`i(vq) ≥
{
dHi

(vq) + 2, if i < q,
1, otherwise.

(9)
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In particular, this shows that Aq 6= ∅. Observe that this leads to a con-
tradiction since Qq = (vq) and a coloring of vq with any color c ∈ Aq can be
extended to an Aψ-CBC-coloring of (H,Q) by the definition of reversible re-
duction. Denote by `i(vj) the value |Ai(vj)|, for each i ≤ j ≤ q. Consider the
inequalities:

Claim 15. If inequalities (7), (8), and (9) hold some i, with 1 ≤ i < q, and
whenever i 6= 1 we additionally have that Ri is a reduction of Ri−1, then we can
apply Lemma 12 to Ri and obtain Ri+1.

Proof of the claim. Notice that the conditions of Lemma 12 concern dHi
(vi)

(not dG(vi)). Condition 1 of Lemma 12 applied to Ri requires that dHi
(vi) ≤ 4.

This is clearly true, as d(v1) ≤ 4 and for every 2 ≤ i < q we have d(vi) ≤ 5 and
vi has a neighbor outside Hi (namely vi−1). Also, inequality (8) is equivalent
to Condition 2 of Lemma 12. To check Condition 3 of Lemma 12 suppose that
dHi

(vi) = 4. Recall that dG(v1) ≤ 4 and v1 is not a leaf of Q. Therefore,
i 6= 1 and dH(vi) = 5. But since dHi

(vi) = 4, this means that NG(vi) =
NHi(vi) ∪ {vi−1}, which implies that Ai−1(vi) = [7] (as no neighbor of vi was
previously colored, we still have all colors available for vi). Then, Condition 3
of Lemma 12 follows by the fact that Ri is a reduction of Ri−1.

Continuing the proof of Lemma 14, we first argue that inequalities above
hold for i = 1. Recall that H1 = H, P1 = Q, and A1 = Aψ. First, consider any
j ∈ {2, . . . , q − 1}. Since F is a linear tree, we have that NF (vj) ⊆ Q, which
means every vertex not in H forbids at most one color for vj , therefore, `1(vj) ≥
7−dG−H(vj) = 7−(dG(vj)−dH(vj)). By the choice of v1 and vq, we know that
dG(vj) = 5, which in turn implies inequality (7). Now, by Lemma 13, we know
that dP (v1) = 2; so let v ∈ NP (v1) \ {v2}. Note that v forbids three colors for
v1, while each other colored neighbor of v1 forbids just one color. This gives us
that `1(v1) ≥ 7−(dG−H(v1)+2dP−Q(v1)) = 5−(dG(v1)−dH(v1)) ≥ dH(v1)+1.
Analogously, for vq we get: if d(vq) = 3, then dF (vq) = 2 and `1(vq) ≥ dH(vq)+2;
and if vq is a leaf in P , then by Lemma 13 we get dG(vq) = 5, and as before
`1(vq) = 7− dG−H(vq) ≥ dH(vq) + 2.

Now, suppose inequalities (7), (8), and (9) work for some 1 ≤ i ≤ q − 1.
By Claim 15, there is a reversible reduction Ri+1 obtained from Ri. We want
to prove that inequalities (7), (8), and (9) also hold for Ri+1. First, note that
if vj ∈ N(vi) \ {vi+1}, then dHi+1(vj) = dHi(vj) − 1 and, by definition of a
reduction, `i+1(vj) ≥ `i(vj) − 1. Hence, inequality (7) holds. Furthermore,
in the case where i ≤ q − 2, inequality (9) also holds. Similarly, dHi+1

(vi+1)
decreases by 1, while `i+1(vi+1) decreases by at most 2; hence, if i ≤ q − 2, we
have that `i(vi+1) ≥ dHi

(vi+1) + 2, which means that inequality (8) also holds
for Ri+1. Finally, suppose that i = q − 1. Then `q−1(vq) ≥ dHq−1(vq) + 2 = 3,
and by the definition of reduction we get that `q(vq) ≥ 1, i.e., inequality (9)
holds also when i = q − 1, and we are done proving (a) and (b).

Finally, in order to prove (c), suppose for a contradiction that d(x) = 4, for
three vertices x ∈ V (P ), and let u, v, w ∈ V (P ) be the closest three vertices of
degree 4 in P , where v is between u and w. This time, we let Q = (v1, v2, . . . , vq)
be the subpath of P from u to w, so v1 = u, v1 = w, and we let vp = v. As
before, denote G[V (Q)] by H, and let ψ be a CBC-7-coloring of (G−H,F −H).
Note that, by cases (a) and (b), any vertex of Q different from v1, vp and vq,
must have degree 5 in G. Therefore:
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• For each z ∈ V (Q) \ {v1, vp, vq}, we get

aψ(z) ≥ 7− dG−H(z) = 7− (dG(z)− dH(z)) = 2 + dH(z);

• For z ∈ {v1, vq}, we get aψ(z) ≥ 4− (dG−H(z)− 1) = 1 + dH(z); and

• aψ(vp) = 7− dG−H(vp) = 3 + dH(vp).

By analogous arguments to that of the first two cases, one can verify that a
series of reversible reductions can be made on Q. First, for 1 ≤ i ≤ p, we let
Qi = (vi, . . . , vp, . . . , vq), and we do p−1 until we obtain a triple ((Hp, Qp), Ap).
Later, we continue to shrink Qp but doing reductions from the other side, that
is, we let Qjp = (vp, . . . , vq−j), for 0 ≤ j ≤ q − p, until we arrive at Qpp = (vp)
together with some non-empty list App. As before, this is a contradiction. So,
statement (c) must hold.

5.2. Discharging Method

Now, we are able to prove Theorem 6. We make an abuse of language and
use the same nomenclature as in the proof of Theorem 5, although the terms
“island” and “bad island” have have only a analogous meaning.

Consider a plane graph G and its dual G∗, and let F3 be the set of faces
of degree 3 in G. In this section, we are assuming that G contains no cycle of
length 4, so all faces in G∗ − F3 have degree at least 5. Then, this time we
denote the graph G∗ − F3 by G∗5. We say that a component of G∗5 is an island
of G. Also, if H is an acyclic component of G∗5 such that dG∗(f) = 5 for every
f ∈ V (H), then we say that H is a bad island of G. We denote the set of
bad islands of G by Γ and we let γ denote |Γ|. Also, for v ∈ V (G), we denote
by Γ(v) the set of bad islands containing v, and by γ(v) the value |Γ(v)|. If
X ⊆ V (G), then Γ(X) =

⋃
x∈X Γ(x), and γ(X) = |Γ(X)|. In the remainder

of the text, although we refer to G as being planar, we are fixing a particular
(planar) embedding of G and its islands.

Lemma 16. Let G be a plane graph without cycles of length 4 as subgraph.
Then ∑

v∈V (G)

(d(v)− 4) ≤ 2γ

3
− 8.

Proof. Note that the inequality in this lemma is equivalent to

m ≤ 2n− 4 +
γ

3
,

where n denotes |V (G)| and m denotes |E(G)|.
Let f3, f5 denote the number of faces of degree 3 and 5, respectively. Also,

denote by F the set of faces of G and by |f | the degree of a face f ∈ F . We
claim that:

3f3 + f5 ≤ m+ γ (10)

This implies that t =
∑
f∈F (|f | − 6) ≥ −3f3 − f5 ≥ −m − γ. On the other

hand t =
∑
f∈F (|f |)−6|F| = 2m−6|F|. Combining these and applying Euler’s

Formula we get:
2m− 6(2− n+m) ≥ −m− γ.
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Therefore,

m ≤ 2n− 4 +
γ

3
.

It remains to prove inequality (10). This is entirely analogous to the proof
of Lemma 10, replacing f4 by f5 due to the fact that now we are working on
G∗5 instead of G∗4 and to our definition of bad islands. We repeat it here for the
sake of completeness. Partition E(G) into E3 ∪ E3, where

E3 = {e ∈ E(G) : e is contained in some 3-face}.

Because G has no cycle of length 4, we trivially get that |E3| = 3f3. To
finish the proof, we show that |E3| ≥ f5−γ. For this, note that if e ∈ E3 if and
only if its dual edge e∗ belongs to E(G∗5). Therefore, |E3| = |E(G∗5)|. Finally,
letting i(G∗5) be the number of acyclic components of G∗5, we get:

|E3| ≥ |V (G∗5)| − i(G∗5) ≥ f5 − γ.

Supposing that (G,F ) is a minimal counterexample to Theorem 6, we apply
the Discharging Method to prove that∑

v∈V (G)

(d(v)− 4)− 2γ

3
≥ 0,

contradicting Lemma 16. We start by giving charge d(v)−4 to every v ∈ V (G),
and charge −2/3 to every bad island. We will have five discharging rules to
ensure that every vertex and every bad island ends up with a non-negative
charge: every bad island will receive charge by some of the rules, and Property
P (i) below shall hold for every i ∈ [5]. Therefore, in the end, we conclude that
no minimal counterexample exists and we are done with the proof of Theorem 6.

Given x ∈ V (G) ∪ Γ, the initial charge of x is denoted by µ0(x), and the
charge of x after Rule i is applied is denoted by µi(x), for each i ∈ [5].

Property P (i). After Rule i is applied, we have that µi(v) ≥ 0 and µi(b) ≥ 0
for every vertex v every bad island b whose charge has changed while applying
Rule i.

The rules are applied in the order they are presented. For each i ∈ [5], after
we state Rule i, we give a proof that Property P (i) is satisfied.

Rule 1. For every v ∈ V (G) with d(v) ≥ 6, send 2/3 from v to each b ∈ Γ(v).

Proof of Property P (1). Consider v ∈ V (G) with d(v) ≥ 6. Because every is-
land containing v receives 2/3, we just need to prove that µ1(v) ≥ 0. Because

G has no cycles of length 4, observe that γ(v) ≤ d(v)
2 . This gives us that:

µ1(v) ≥ d(v)− 4− 2

3
γ(v) ≥ d(v)− 4− 2

3
· d(v)

2
≥ 2

3
d(v)− 4 ≥ 0. (11)

The following proposition will be useful in the remainder of the text.
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Proposition 17. If G is a graph without cycles of length 4, and uv ∈ E(G),
then there exists a face of degree greater than 3 containing uv.

Proof. Observe that it holds because at least one of the two faces containing uv
cannot be a face of degree 3, as otherwise we would have a cycle of length 4.

Rule 2. For each heavy subpath P = (v1, . . . , vq) (contained in a component of
F ) that has no vertex with degree smaller than 5, do:

R2.1 If P is a component of F , send charge 2/3 from µ1(v1) + µ1(v2) to every
b ∈ Γ({v1, v2}). After this, if q ≥ 3, then for each i ∈ {3, . . . , q}, send
charge 2/3 from vi to b ∈ Γ(vi) \ Γ(vi−1),

R2.2 Otherwise, let v0 ∈ NF (v1) \ {v2}. For every i ∈ {1, . . . , q}, send charge
2/3 from vi to b ∈ Γ(vi) \ Γ(vi−1).

Proof of Property P (2). First, note that µ1(vi) = 1 for every i ∈ {1, . . . , q}.
Suppose that P is a component of F . Note that Lemma 7 implies that q ≥ 2.
By Proposition 17, we get that γ({v1, v2}) ≤ 3, and that, when q ≥ 3, then for
every i ∈ {3, . . . , q} we get |Γ(vi) \ Γ(vi−1)| ≤ 1. So, Property P (2) follows.

Now, suppose that P is not a component of G, in which case we can suppose,
without loss of generality, NF (v1) \ {v2} is non-empty and let v0 be one of its
elements. By the definition of heavy path, we know that d(v0) ≥ 6, which, by
Rule 1, implies that the island in Γ(v0) ∩ Γ(v1) has non-negative charge. Now,
applying Proposition 17, for each vi ∈ V (P ) we get that |Γ(vi) \ Γ(vi−1)| ≤ 1.
Hence, Property P (2) also follows in this case.

Rule 3. For each heavy subpath P = (v1, . . . , vq) (contained in a component
of F ) that contains exactly one vertex with degree smaller than 5, say vp, let
v0 ∈ NF (v1) \ P and vq+1 ∈ NF (vq) \ P and do one of the following:

R3.1 If q ≥ 2, we can suppose that p < q, and:

(i) Send charge 2/3 from vi to b ∈ Γ(vi)\Γ(vi−1), for each i ∈ {1, . . . , p−
1};

(ii) Send charge 2/3 from vi to b ∈ Γ(vi) \ Γ(vi+1), for each i ∈ {p +
2, . . . , q};

(iii) If d(vp) = 3, then vp+1 sends charge 1 to vp. Otherwise, vp+1 sends
charge 2/3 to b ∈ Γ(vp) ∩ Γ(vp+1).

R3.2 If q = 1 and d(v1) = 3, let b ∈ Γ(v1). Send charge 1 from µ2(v0)+µ2(v2)+
µ2(b) to v1.

Proof of Property P (3). By Lemma 14, we know that v0 and vq+1 exist, and,
by Rule 1, we know that the islands in Γ(v0) ∩ Γ(v1) and Γ(vq) ∩ Γ(vq+1)
have non-negative charge. First, suppose that q ≥ 2. By arguments similar
to the ones in the previous demonstrations, one can see that the vertices in
{v1, . . . , vp−1, vp+2, . . . , vq}, as well as the islands containing them, have non-
negative charge. Also, note that, by Proposition 17, either d(vp) = 3 and the
only island containing vp also contains vp−1 and vp+1, or d(vp) = 4 and the is-
land in Γ(vp)∩Γ(vp+1) is the only one that might not be satisfied yet. In either
case, one can verify that the rule satisfies vp or the refered island, depending on
the case.
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Now, suppose that q = p = 1. If d(v1) = 4, then Γ(v1) ⊆ Γ(v0) ∪ Γ(v2)
and nothing needs to be done; so suppose otherwise. First note that, because
d(v1) = 3, the island b ∈ Γ(v1) also contains v0 and v2. This means that b has
received charge from both v0 and v2 when Rule 1 is applied; hence µ2(b) = 2/3.
We end the proof by showing that µ2(v2) = µ1(v2) ≥ 2/3. Note that, since
d(v1) = 3 and because G has no cycle of length 4, we can suppose that v1
has no common neighbor with v2. Therefore, if d(v2) = 6, then γ(v2) = 2, and
applying the first part of inequality (11), we get that µ2(v2) = 6−4−4/3 = 2/3.
On the other hand, if d(v2) ≥ 7, we get µ2(v) ≥ 2/3 by inequality (11).

In the next discharging rule, given X ⊆ V (G), we denote
∑
v∈X µ3(x) by

µ3(X).

Rule 4. For each heavy subpath P = (v1, . . . , vq) (of a component of F ) con-
taining exactly two vertices with degree smaller than 5, namely vp and vq, p < q,
take v0 ∈ NF (v1) \ P and v`+1 ∈ NF (v`) \ P . Define

β = Γ(V (P )) \ Γ({v0, v`+1}), and

µ = µ3(V (P )) +
2

3
|Γ(v0) ∩ Γ(v`+1)|.

If µ ≥ 2
3 |β|, then send 2/3 from V (P ) and Γ(v0) ∩ Γ(v`+1) to each b ∈ β.

Proof of Property P (4). The condition to apply Rule 4 already guarantees that
Property P (4) is satisfied.

We still need a final rule for the paths on which the condition µ ≥ 2
3 |β|,

required in the previous rule, does not hold. Before we present the rule, we give
sufficient conditions for Rule 4 to be applied. This is important because Rule 5
will be applied only after we cannot apply Rule 4 anymore.

Lemma 18. If P is a heavy subpath containing exactly two vertices with degree
smaller than 5, and either |V (P )| ≥ 4, or γ(V (P )) ≤ |V (P )|, then µ ≥ 2

3 |β|.

Proof. Consider P, vp, vq, v0, v`+1, β, µ be all defined as in Rule 4 (recall that
v0, v`+1 exist by Lemma 14). First note that

|β| = γ(V (P ))− |Γ(V (P )) ∩ Γ({v0, v`+1}|.

Also, by Proposition 17, we have

γ(V (P )) ≤ 2`− (`− 1) = `+ 1.

Finally, by Lemma 14, we get that d(vp) = d(vq) = 4, and d(vi) = 5 for every
vi ∈ V (P ) \ {vp, vq}. Hence

µ3(V (P )) = `− 2.

Now, denote by t the value |Γ(V (P )) ∩ Γ({v0, v`+1})|. By Proposition 17,
we know that t ≥ 1. We analyse the following cases:
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• If t = 1, then the islands in Γ(v0)∩Γ(v1) and Γ(v`)∩Γ(v`+1) must be the
same, i.e., Γ(v0) ∩ Γ(v`+1) 6= ∅, and |β| = γ(V (P ))− 1. Therefore,

µ ≥ µ3(V (P )) +
2

3
= `− 2 +

2

3
= `− 4

3
.

If ` ≥ 4, then |β| ≤ ` and µ ≥ ` − 4
3 ≥

2
3` ≥

2
3 |β|. And if γ(V (P )) ≤ `,

then |β| ≤ `− 1, and, since ` ≥ 2, we get µ = `− 4
3 ≥

2
3 (`− 1) ≥ 2

3 |β|.

• Now, if t ≥ 2 and ` ≥ 4, then |β| ≤ `− 1, and µ ≥ `− 2 ≥ 2
3 (`− 1) ≥ 2

3 |β|.
Finally, if t ≥ 2 and γ(V (P )) ≤ `, then |β| ≤ `− 2 and clearly µ ≥ `− 2 ≥
|β| ≥ 2

3 |β|.

Now, consider P as in Rule 4 and suppose that the rule is not applied,
which means that there might still exist some bad island intersecting V (P )
with negative charge. If such an island exists, we call such a path defective.
Before we present the last discharging rule, we need the lemmas below. We
mention that by Lemma 18, if P is defective then ` ≤ 3 and γ(V (P )) ≥ ` + 1,
where ` = |V (P )|.

Lemma 19. Let P be a defective path of order ` with extremities v1 and v`, and
denote by v2 the neighbor of v1 in P (hence, it might happen that ` = 2). Also,
let v0 ∈ NF (v1)\{v2}, and v`+1 ∈ NF (v`)\{v`−1}. Then, for each i ∈ {1, 2, `},
we have that vi is contained in exactly two bad islands (which means that vi is
contained in two 3-faces that separate these bad islands), and vi−1vi+1 /∈ E(G).

Proof. First, suppose that i ∈ {1, 2, `} is such that vi is contained in at most one
triangle, which means that γ(vi) ≤ 1. Note that if ` = 3, then |Γ(v1) ∩ Γ(v2) ∩
Γ(v3)|− |Γ(v1)∩Γ(v3)| ≤ 0. This justifies the second line in the equation below.

γ(V (P )) = |
⋃
vj∈V (P ) Γ(vj)|

≤
∑
j∈{1,2,`} γ(vj)−

∑
j∈{1,`−1}|Γ(vj) ∩ Γ(vj+1)|

≤
∑
j∈{1,2,`}\{i} γ(vj) + γ(vi)− (`− 1)

≤ 2(`− 1) + 1− `+ 1 = `

This means that P satisfies Lemma 18, a contradiction. Note also that this
actually implies that each vi is contained in exactly two bad islands.

Now, suppose that i ∈ {1, 2, `} is such that vi−1vi+1 ∈ E(G). Note that if
` = 3 and i = 2, then γ(V (P )) = γ({v1, v3}), and the island in Γ(v0) ∩ Γ(v1)
also contains v3. This implies that γ(V (P )) = 3, contradicting Lemma 18. So
suppose, without loss of generality, that i = 1 and let b be the island containing
v0v2. Note that Γ(v1) ⊆ Γ({v0, v2}); therefore, β = Γ({v2, v`}) \ Γ({v0, v`+1}).
First consider ` = 2. If b also contains v3, then |β| ≤ |Γ(v2) \ {b}| = 1, and
Γ(v0) ∩ Γ(v3) 6= ∅, which implies µ ≥ 2

3 |β|. And if b does not contain v3,
then Γ(v2) ⊆ Γ({v0, v3}), in which case β = ∅. Both cases are contradictions.
Therefore, suppose that ` = 3, and let B denote Γ({v0, v4}). Note that:

|β| = |Γ({v2, v3}) \B|
= |(Γ(v2) \B) ∪ (Γ(v3) \B)|
≤ |(Γ(v2) \B)|+ |(Γ(v3) \B)| ≤ 2.
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The last part holds since b ∈ Γ(v2) ∩B, and Γ(v3) ∩ Γ(v4) 6= ∅ (Proposition
17). If |β| ≤ 1 we are done since µ ≥ 1. Therefore, suppose |β| = 2, in which
case we must have (Γ(v2) \B)∩ (Γ(v3) \B) = ∅. So, let bi ∈ Γ(vi) \B, for i = 2
and i = 3, and let b∗ ∈ Γ(v3) ∩ Γ(v4). Because Γ(v2) ∩ Γ(v3) 6= ∅ and b2 6= b3,
we get b = b∗, i.e., b ∈ Γ(v0) ∩ Γ(v4). Therefore, we get µ ≥ 1 + 2

3 >
4
3 = 2

3 |β|,
a contradiction.

The next lemma is the final step before we can present the last discharging
rule. We denote by Θ the set of bad islands with negative charge, and by D the
set of vertices of degree 5 which are contained in some island in Θ.

Lemma 20. Let b ∈ Θ, and f be a face of degree 5 in b. Then f contains at
least one vertex of D and, if it contains exactly one such vertex, namely u, then
b is the only island in Θ that contains u.

Proof. Let f = (v1, . . . , v5) be such that vi is contained in some defective path,
for each i ∈ {1, . . . , 5}. Without loss of generality, suppose that d(vi) = 4 for
every i ∈ {1, . . . , 4}. First, we want to prove that (v1, . . . , v5) is an induced
cycle in G. So suppose that v1v3 ∈ E(G). Since f is a 5-face in G, we must
have that the edge v1v3 is traced in the outer side of f . Because δ(G) ≥ 3,
one can verify that this implies that (v1, v2, v3) is not a 3-face in G, which
in turn implies that v1 is contained in at most one bad island, contradicting
Lemma 19. Observe that the same argument can be applied to conclude that
vivj /∈ E(G) for every i ∈ {1, . . . , 4} and every j ∈ {1, . . . , 5}\{i}. Now observe
that, by Lemma 19, there must exist u1, . . . , u5, where u5 ∈ N(v1)∩N(v5), and
ui ∈ N(vi) ∩ N(vi+1), for each i ∈ {1, . . . , 4}. This means that every island
in Θ is a face of degree 5. We claim that d(v5) = 5. Supposing it holds, let
w ∈ N(v5) \ {v1, v4, u4, u5}; also let f1 be the face containing u4v5 different
from (v4, v5, u5), and f2 be the face containing u5v5 different from (u5, v5, v1).
Because G has no cycles of length 4, we know that f1 and f2 have degree bigger
than 3, and that they share the edge v5w. This means that f1 and f2 are within
the same island t, which implies that t /∈ Θ, and the lemma follows, i.e., b is the
only island in Θ containing u. It remains to prove our claim.

Suppose by contradiction that d(v5) = 4, and let H denote the induced
subgraph G[{v1, . . . , v5, u1, . . . , u5}]. Because dF (vi) = 2 and N(vi) ⊆ V (H)
for every i ∈ {1, . . . , 5}, we know that H must contain every edge in F incident
to {v1, . . . , v5}. For each vi, let Ei denote the set {uvi ∈ E(F )}; we know
that |Ei| = 2. Therefore, if Ei ∩ Ej = ∅ for every i, j ∈ {1, . . . , 5}, i 6= j,

then |E(H) ∩ E(F )| = |
⋃5
i=1Ei| =

∑5
i=1|Ei| = 10 = |V (H)|, contradicting the

fact that F is acyclic. We can then suppose, without loss of generality, that
v1v2 ∈ E(F ). By Lemmas 14 and 19, we get that {u5v1, u2v2} ⊆ E(F ). Also,
by Lemma 19, we get |{v3v4, v3u3} ∩ E(F )| ≤ 1 and |{v4v5, u4v5} ∩ E(F )| ≤ 1.
This implies that {u5v5, u2v3} ⊆ E(F ). It is easy to verify that no matter the
choice of edges in E4, we get a cycle in F , a contradiction.

Rule 5. Let K = (D,E) be such that uv ∈ E if and only if u and v are within
the same bad island b ∈ Θ. For each component K ′ of K, apply one of the
following:

R5.1 If |V (K ′)| ≥ 2, let T be a spanning tree of K ′ and let uv ∈ E(T ). Send
charge 2/3 from {u, v} to each island in Γ({u, v}), and for every w ∈
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V (T )\{u, v}, send charge 2/3 from w to the island in Γ(w)\Γ(w′), where
w′ ∈ NT (w) separates w from uv.

R5.2 If V (K ′) = {u}, send 2/3 from u to the bad island in Θ containing u.

Proof of Property P (5). The fact that P (5) holds follows from Lemma 20.

Lemma 20 also guarantees that every bad island has received some charge
after Rule 5. With this, we conclude the proof of Theorem 6.

6. Concluding Remarks and Further Research

In this article, we investigate Conjectures 2 and 3, and Questions 1 and 2.
Our results have some kind of graduation from one to the other. Consider G
to be a planar graph, M to be a matching of G, and F to be a linear forest of
G. In Theorem 4, we prove that if G has no C4 nor C5, then CBC(G,M) ≤
5. In Theorem 5, we forbid faces of size 3 of sharing an edge (graphs that
do not contain C4 satisfy that property), but we need one extra color, i.e.,
CBC(G,M) ≤ 6. Finally, in Theorem 6, we forbid only C4 and allow for bigger
backbones, namely linear forests, and once again we need an extra color, i.e.,
CBC(G,T ) ≤ 7.

Each of our proofs uses the discharging method, and greatly profit from the
fact that the investigated planar graphs do not have small cycles and that the
backbones have simple structure. In particular, it seems to us that the method
cannot be applied in general, since when nested triangles are allowed, they put
a great burden in the discharging phase. This means that in order to generalize
Theorem 5, another approach should be needed. Nevertheless, we believe that
the discharging method can be applied to generalize Theorem 6 to general forest
backbones.

Concerning Theorem 4, it is presented as a partial answer to Conjecture 3
and to Question 2. In fact, the conjecture had already been proved for linear
forests in [13]. However, our theorem actually gives a better upper bound. Since
Steingberg’s Conjecture has been disprove, we cannot relax the condition on H
in Conjecture 3 to let H be any spanning graph of G (as this conjecture is
equivalent to Steingberg’s Conjecture when H = G). However, one may still
ask if H can be “larger” than a spanning tree in some sense.

Finally, recall that the original questions regarding matching and tree back-
bones are actually about the non-circular version of the problem (Conjecture 1
and Question 2). The proposed upper bounds are inspired by known examples
where they are met. Namely, in [4] it is presented a planar graph G and a tree T
of G such that BBC(G,T ) = 6, and in [12] it is presented a planar graph G and
a matching M of G such that BBC(G,M) = 5. However, in both examples it is
possible to obtain circular backbone colorings that do not increase the number
of used colors. Therefore, we ask whether the bounds for the circular case need
to be larger.

Question 3. Does there exist a pair (G,H) such that G is a planar graph, H
is a forest of G, and CBC(G,H) = 7? Also, does there exist a pair (G,H) such
that G is a planar graph, M is a matching of G, and CBC(G,M) = 6?

One can also ask whether the bounds are tight in the particular cases inves-
tigated in this article.
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