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a b s t r a c t

An edge coloring of the n-vertex complete graph Kn is a Gallai coloring if it does
not contain any rainbow triangle, that is, a triangle whose edges are colored with
three distinct colors. We prove that the number of Gallai colorings of Kn with at most
three colors is at most 7(n + 1) 2(

n
2), which improves the best known upper bound of

3
2 (n − 1)! · 2(

n−1
2 ) in Benevides et al. (2017) .

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An edge coloring of the complete graph Kn is a Gallai coloring if it contains no rainbow K3, that is, a copy of K3 in
which all edges have different colors. A t-coloring is an edge coloring that uses at most t colors. The term Gallai coloring
was used by Gyárfás and Simonyi in [20], but those colorings have also been studied under the name Gallai partitions by
Körner, Simonyi and Tuza in [28]. See also [19] for a generalization to non-complete graphs and [12] for hypergraphs.
The nomenclature is due to a close relation to a result in Gallai’s influential original paper [17] — translated to English
and endowed by comments in [18]. The above mentioned papers are mostly concerned with structural and Ramsey-type
results about Gallai colorings. For example, in [20] it was proved that any Gallai coloring can be obtained by substituting
complete graphs with Gallai colorings into vertices of 2-colored complete graphs [20, Theorem A], and that any Gallai
coloring contains a monochromatic spanning tree [20, Theorem 2.2].

We are interested in the problem of counting the number of Gallai colorings of Kn with a fixed set of colors, and focus
here on the case where we use at most three colors. Here, we consider that the vertices of Kn are labeled. This problem
has been investigated in the recent literature by other authors (under the more descriptive name rainbow triangle-free
colorings). Actually, in a more general setting, in the past years there has been growth in the number of results about
counting the number of structures that do not contain a particular kind of substructure, due to the recent development of
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Table 1
Values of c1(n), c2(n), c3(n), and c(n).
n c1(n) c2(n) c3(n) c(n)

2 3 – – 3
3 3 18 – 21
4 3 186 90 279
5 3 3,066 3,060 6,129
6 3 98,298 112,686 210,987
7 3 6,291,450 5,522,496 11,813,949
8 3 805,306,362 407,207,826 1,212,514,191

modern and classic methods such as the Containers Method [7,31], the Regularity Method [1,23,25,26], and the Entropy
Compression Method [4,15]: such results include, for example, counting sum-free sets in Abelian groups [3,6], graphs
without given subgraphs [8,9,24,29], sets of integers with no k-term arithmetic progression [5], and Bh-sets [13], to cite
only a few.

In [10], Benevides, Hoppen and Sampaio, motivated by a question of Erdős and Rothschild (see, e.g., [14]), studied the
general problem of counting the number of colorings of a graph that avoid a subgraph colored with a given pattern (see
also [2,21,22,30]). We denote the number of Gallai colorings of Kn that use (not necessarily all) colors from a given set of
k colors by c(n, k). The problem of computing exactly the value of c(n, k) appears to be hard even when we restrict k to
three. Since the vertices of Kn are labeled, we have the trivial lower bound c(n, 3) ⩾ 3 · 2(

n
2) − 3, given by the colorings

that use only one or two of the three colors. To the best of our knowledge, the best known upper bound for c(n, 3) is
3
2 (n− 1)! · 2(

n−1
2 ) (see [10]). We remark that a previous work using entropy, graph limits and the Container Method, leads

to a general result that in turn implies a weaker upper bound of the form 2(1+o(1))(n2) (see [16]). Since, in this work, we
only study the case k = 3, to keep the notation simple we will write c(n) to denote c(n, 3).

Our main result (see Theorem 1) improves the best known upper bound on c(n). While most recent related results only
work for sufficiently large structures, our result holds for every value of n ⩾ 2. Furthermore, we provide an elementary
proof of such result, which is also relatively short.

Theorem 1. For all n ⩾ 2 we have

c(n) ⩽ 7(n + 1) 2(
n
2).

Even though our proof is completely mathematical, we also used computer search to calculate the exact number of
Gallai colorings of small complete graphs (see Table 1 in Section 3) and to list all Gallai colorings of Kn for n up to 5. This
provided us an insight on how to use a simple induction to estimate c(n) for large values of n and how to organize some
case analysis for small values of n. We believe our strategy could also give good bounds when more colors are allowed,
or even improve the above bound with a finer analysis (but probably leading to a much longer proof than we would like
to show here).

Regardless of the nomenclature, it is also worth mentioning that Gallai colorings appear naturally in other fields, such
as Information Theory [27] (what motivates the use of entropy for solving this kind of problems), and the perfect graph
theorem [11].

In Sections 2.1 and 2.2 we estimate the number of extensions of colorings of the complete graphs that use, respectively,
exactly two colors and exactly three colors. Most proofs in those sections are done by induction. The base cases are usually
tedious, so we moved some of them to the Appendix. For those cases we only need to check some particular colorings
of K4, K5, and K6, but we also did an extensive computer search for all Gallai colorings of Kn for n ⩽ 8, and computer
checked our results up to this value. Section 3 also contains a table with the exact values of c(n) for n ⩽ 8. In Section 2.3
we give a proof of Theorem 1.

2. Counting the maximum number of extensions

Let Φn be the set of all Gallai 3-colorings of Kn that use colors from the set {red, green, blue}. So, each element of Φn
is a function ϕ : E(Kn) → {red, green, blue}, and c(n) = |Φn|. For a fixed ϕ ∈ Φn, we denote by w(ϕ) the number of ways
to extend ϕ to a Gallai 3-coloring of the complete graph Kn+1. We think of Kn+1 as obtained from Kn by adding a new
vertex u, and w(ϕ) as the number of ways to color all edges incident to u without creating a rainbow triangle given that
E(Kn) had already been colored as in ϕ. We start with the following trivial fact that calculates the number of extensions
of a monochromatic coloring.

Fact 2. Let n ⩾ 2 be an integer and let ϕ ∈ Φn be a monochromatic coloring of the edges of Kn. Then,

w(ϕ) = 2n+1
− 1.
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Proof. Without loss of generality assume that all edges of Kn are colored blue. Let {u} = V (Kn+1) ∖ V (Kn). Notice that in
any extension we cannot use colors red and green on two different edges between u and Kn. So, all extensions either use
only colors blue and red, or only blue and green. As the extension in which all edges are blue is counted in both cases,
there are 2n

+ 2n
− 1 extensions, as claimed. □

An straightforward approach to estimate c(n) is to use bounds on the parameter w(·) to bound c(·), as we have the
trivial relation c(n) =

∑
ϕ∈Φn−1

w(ϕ). Unfortunately, computing w(ϕ) for each ϕ ∈ Φn−1 may be as hard as the original
problem. Also, a trivial but tight general upper bound on w(ϕ), for ϕ ∈ Φn−1, leads to a very weak upper bound on c(n).
But we can partition Φn−1 into classes in a way that we know how to estimate the maximum value of w(·) in each of those
classes and use this fact to get a better upper bound on c(n). So, our strategy is to partition Φn−1 into three classes: the
monochromatic colorings, the colorings that use exactly two colors, and those that use exactly three colors. We denote
those classes, Φn−1(1), Φn−1(2), and Φn−1(3) respectively, so that Φn−1 = Φn−1(1)∪Φn−1(2)∪Φn−1(3) is a disjoint union.
We compute the maximum possible value of w(ϕ) for ϕ in each of those classes and determine for which colorings this
maximum is achieved. A coloring that has the maximum number of extensions among colorings in its class will be called
extremal. The underlying reasoning for this method to work is that there is a large gap between the maximums of those
classes. Before that, we state a general result about the (maximum) number of extensions of an extension.

Lemma 3. Let ϕ ∈ Φn be a Gallai coloring. If ϕ′ is an extension of ϕ to E(Kn+1), then

w(ϕ′) ⩽ 2w(ϕ) + 1.

Proof. Let Kn be the complete graph on n vertices, V be its vertex set, and ϕ ∈ Φn be a Gallai coloring. Let ϕ′ be any
extension of ϕ to E(Kn+1) and u /∈ V be the new vertex (added to obtain Kn+1). To count the number of Gallai extensions
of ϕ′ to E(Kn+2), we will add a new vertex x and all edges from x to V ∪{u}. We first color the edges from x to V . If we let
t = w(ϕ), there are t colorings, say ϕ1, . . . , ϕt , of the edges from x to V . For each i ∈ {1, . . . , t} we let mi be the number
of ways we can color the edge ux given that we have colored the edges from x to V as in ϕi. Clearly, mi ∈ {0, 1, 2, 3} and
w(ϕ′) =

∑t
i=1 mi.

Fix any i, with 1 ⩽ i ⩽ t . Recall that the edges from u to V are already colored (in ϕ′). If there is any vertex v ∈ V such
that ϕ′(uv) ̸= ϕi(xv), then there is a forbidden color for xu and mi ⩽ 2. Therefore, the only way to have mi = 3 is when
the coloring ϕi is such that ϕi(xy) = ϕ(uy) for every y in V (and for such coloring we have, indeed, mi = 3). This implies
that

∑t
i=1 mi ⩽ 2t + 1. □

We remark that when ϕ is a monochromatic coloring and ϕ′ is its monochromatic extension, by Fact 2, we have
w(ϕ) = 2n+1

− 1 and w(ϕ′) = 2n+2
− 1. Therefore, w(ϕ′) = 2w(ϕ) + 1, which implies that Lemma 3 is best possible.

In what follows we introduce a few definitions that play an important role in our proofs. Given a coloring of the edges
of Kn and a vertex v ∈ Kn, we say that v is monochromatic if all edges incident to v have the same color. We also say that
v is a red vertex (resp. blue vertex, green vertex) if all edges incident to v are red (resp. blue, green).

Given a vertex v ∈ V (Kn), we denote by ϕv the restriction of the coloring ϕ to the complete graph Kn−1 obtained by
removing v from Kn. We will define some special colorings of E(Kn) and later we will prove that those are the unique
extremal colorings in each of their classes (see Fig. 1).

First, any monochromatic coloring is considered special. Next, consider the case where E(Kn) is colored with exactly
two colors. We say that ϕ ∈ Φn(2) is vertex-special if there is a monochromatic vertex v, say of color c1, and all edges not
incident to v have the same color, say c2, where c1 ̸= c2. We say that ϕ is edge-special if all edges have the same color
with the exception of exactly one edge.

Now assume that ϕ ∈ Φn(3). In this case, we say that ϕ is vertex-special if there is a monochromatic vertex v in a color
c ∈ {red, blue, green}, and ϕv is an edge-special coloring with colors {red, blue, green}∖ {c}. Furthermore, we say that ϕ
is edge-special if there are two non-adjacent edges with different colors c1 and c2 in {red, blue, green} and all other edges
are colored with color {red, blue, green} ∖ {c1, c2}.

Finally, we say that ϕ is special to mean that ϕ is vertex-special or edge-special, and it is non-special otherwise. See
Fig. 1 for the non-monochromatic special 3-colorings of K7.

Many of the lemmas presented here are dedicated to compute the number of extensions of some particular colorings.
In order to keep the notation simple, whenever it is clear from the context, we keep the same name, ϕ, for the coloring
of E(Kn) and a particular extension ϕ : E(Kn+1) → {red, green, blue} of it.

2.1. Graphs colored with exactly two colors

In the main result of this section (Lemma 6) we calculate a tight upper bound to the number of extensions of complete
graphs that use exactly two colors. Before that, we compute the number of extensions of the special non-monochromatic
2-colorings.

Lemma 4. For all n ⩾ 3, if ϕ ∈ Φn(2) is a special coloring of Kn using exactly two colors, then

w(ϕ) = 3 · 2n−1
+ 1.
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Fig. 1. All special non-monochromatic colorings (up to isomorphism).

Proof. Let n ⩾ 3 be a fixed integer. Suppose first that ϕ is the vertex-special coloring of Kn with colors red and blue (see
Fig. 1) and v ∈ Kn is its monochromatic vertex, say blue. Let u be the new vertex added to Kn to obtain Kn+1. We count the
number of ways to color the edges from u to V (Kn), considering three cases according to the color of uv. (As mentioned
earlier, we will also call ϕ the extension).

Case ϕ(uv) = blue. Since we also have ϕ(vx) = blue for every x ∈ V (Kn)∖ {v}, there is no chance of having a rainbow
triangle that uses v. And since Kn −v is a monochromatic red graph, by Fact 2, we have 2n

−1 ways of coloring the edges
from u to V (Kn) ∖ {v}.

Case ϕ(uv) = red. Since ϕ(vx) = blue for every x ∈ V (Kn) ∖ {v}, then we cannot have any green edge from u to
V (Kn) ∖ {v}. Furthermore, there is no restriction about using colors red or blue from u to V (Kn) ∖ {v}. Then, we have a
total of 2n−1 ways of coloring the edges from u to V (Kn) ∖ {v}.

Case ϕ(uv) = green. For this case note that we cannot use color red on the edges between u and V (Kn)∖ {v}, so they
are all blue or green. Recall that Kn − v is a monochromatic red graph, and since n ⩾ 3, we have that |V (Kn) ∖ {v}| ⩾ 2.
Therefore, for any two distinct vertices y1, y2 ∈ V (Kn)∖ {v}, we must have ϕ(uy1) = ϕ(uy2) as otherwise we would have
a rainbow triangle. Thus all edges from u to V (Kn) ∖ {v} should have the same color (green or blue).

Then, we conclude that there are w(ϕ) = (2n
− 1) + 2n−1

+ 2 = 3 · 2n−1
+ 1 ways to extend the coloring ϕ.

Now, suppose ϕ is the edge-special coloring of Kn with the colors red and blue, and b1b2 ∈ E(Kn) is its only blue edge.
Let u be the new vertex added to Kn to obtain Kn+1. Similar to the vertex-special coloring, we consider cases according to
the colors of the edges ub1 and ub2.

Case ϕ(ub1) = ϕ(ub2) = red. Note for this case that we do not have any restriction to the colors of the remaining
edges incident to u, and as Kn − b1 − b2 is monochromatic, by Fact 2, there are 2n−1

− 1 ways to color those remaining
edges.

Cases (ϕ(ub1) = blue and ϕ(ub2) = green) or (ϕ(ub1) = green and ϕ(ub2) = blue). Note for each of these cases that
there is only one way to color the edges from u to V (Kn)∖ {b1, b2} because all those edges must be red. So, this gives us
two other extensions.

Other cases. There are other four cases for the colors of ub1 and ub2 (as the number of 3-colored Gallai extensions of
a single colored edge is seven). In each of those, we forbid the use of exactly one color to be used on the edges between
u and V (Kn)∖ {b1, b2}. Furthermore, as opposed to the previously analyzed case, we can color freely such edges with the
available two colors. Thus, for each of the four remaining cases, we have exactly 2n−2 ways to color the remaining edges.

In total we have w(ϕ) = 2n−1
− 1 + 2 + 4 · 2n−2

= 3 · 2n−1
+ 1 ways to extend ϕ. □

We will also use the following fact.

Fact 5. Let k ⩾ 1 and n ⩾ max{4, 2k−1} be fixed integers. For any coloring ϕ of E(Kn) with exactly k colors, there is a vertex
v such that ϕv uses exactly k colors.

Proof. For k = 1 the result is trivial. For k = 2 and n ⩾ 4, clearly there must be a vertex x that is incident to edges of
both colors; say xa and xb have different colors. Letting v be any vertex in V (Kn) − {x, a, b}, we have that ϕv uses both
colors.
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Fig. 2. All non-special 2-colorings of K4 (up to isomorphism). The number of extensions of each of them is computed in Lemma 11.

So we may assume that k ⩾ 3 and n ⩾ 2k − 1. Let ϕ be an arbitrary coloring of E(Kn) with k colors. For a given
j ∈ {1, . . . , k}, we denote by Ij the set of vertices v of V (Kn) such that ϕv does not use color j. Thus we want to show that⋃k

j=1 Ij ̸= V (Kn). For each u ∈ Ij, all edges with color j must be incident to u. Therefore, |Ij| ⩽ 2 and the only way to have
|Ij| = 2 is when there is only one edge of color j.

Suppose for a contradiction that
⋃k

i=1 Ik = V (Kn). Since we have at least 2k−1 vertices and |Ij| ⩽ 2 for all j ∈ {1, . . . , k},
at least k − 1 of those sets must have size 2. Assume without loss of generality that |I1| = · · · = |Ik−1| = 2. Then, the set
I1 ∪· · ·∪ Ik−1 has at most 2k−2 ⩽ n−1 vertices and contains exactly one edge for each color in {1, . . . , k−1}. Therefore,
all other edges induced by I1 ∪ · · · ∪ Ik−1 must have color k. We claim that the set of such edges of color k is non-empty.
In fact, I1 ∪ · · · ∪ Ik−1 induces at least k vertices (one can even argue that it induces at least 2k − 3 vertices) and then, as
k ⩾ 3, it induces at least k edges. Therefore, we can take v to be any vertex not in I1 ∪ · · · ∪ Ik−1. □

Lemma 6 shows that the only extremal Gallai colorings that use exactly two colors are the special ones. In the proof of
our main theorem (Theorem 1), for ϕ ∈ Φn(2) we will only need to use that w(ϕ) ⩽ 3 ·2n−1

+1. But we note that, instead
of this, it is easier to prove that w(ϕ) < 3 · 2n−1 for non-special 2-colorings, because of the way we apply induction.

Lemma 6. Given n ⩾ 3, let ϕ: E(Kn) → {red, blue} be a non-monochromatic coloring. Then, the following hold:

(1) If ϕ is special, then w(ϕ) = 3 · 2n−1
+ 1.

(2) If ϕ is non-special, then w(ϕ) < 3 · 2n−1.

Proof. If ϕ is special, then we are done by Lemma 4. For the non-special colorings, we proceed by induction on n.
In what follows consider a non-special (in particular, non-monochromatic) 2-coloring ϕ: E(Kn) → {red, blue}. Since

every Gallai 2-coloring of K3 is special, we may assume that n ⩾ 4. Our inductive step will only work for n ⩾ 5, so we
also need to treat n = 4 as a base case.

Let n = 4 and ϕ be a non-special coloring of K4 that uses colors red and blue. We will show that ϕ has to be isomorphic
to one of the colorings depicted in Fig. 2. Assuming this, we have that w(ϕ) ⩽ 23 < 3·23 (see Lemma 11 in the Appendix).

Let V (K4) = {x1, x2, x3, x4}. If there is a monochromatic vertex, say blue, then the other three vertices form a triangle
with two red edges and one blue edge, as otherwise ϕ would be special. So we have the coloring depicted in Fig. 2-(i).
Thus, we may assume that there is no monochromatic vertex. Since x1 is not monochromatic, we may assume without loss
of generality that x1x2 is red, and x1x3 and x1x4 are blue. Now, x2 must have at least one blue neighbor and, by symmetry,
we may assume that x2x4 is blue. Now x4 must have a red neighbor and the only option is x3. Finally, depending on the
color of x2x3 we either have the coloring depicted in Fig. 2-(ii) or the one in Fig. 2-(iii).

For the inductive step, suppose that n ⩾ 5 and that the result holds for any non-monochromatic 2-coloring of the edges
of Kn−1. Recall that ϕ is a non-monochromatic coloring of E(Kn) with colors red and blue. By Fact 5, there exists a vertex v
such that ϕv is not monochromatic. If w(ϕv) < 3 ·2n−2 then, by Lemma 3, we have w(ϕ) ⩽ 2(3 ·2n−2

−1)+1 = 3 ·2n−1
−1.

Thus, we may assume that w(ϕv) ⩾ 3 · 2n−2. Then, from the inductive hypothesis, we conclude that ϕv is special. We will
consider separately the cases where ϕv is vertex-special and edge-special.

Suppose first ϕv is vertex-special and, assume without loss of generality, that there is a blue vertex w in ϕv . Let
{x1, . . . , xn−2} = V (Kn)∖ {v, w}. As n ⩾ 5, the coloring ϕxi is not monochromatic for any 1 ⩽ i ⩽ n−2 (even in Kn −{v, xi}
there are two edges of different colors). As before, by Lemma 3, we may assume that ϕxi is special, for any 1 ⩽ i ⩽ n− 2.
This implies that ϕ(vw) = blue, and ϕ(vxi) = ϕ(vxj) for any 1 ⩽ i < j ⩽ n − 2. If ϕ(vxi) = red for every i, then ϕ would
be vertex-special (w would be a blue vertex and every other edge would be red), a contradiction. Thus, we may assume
that ϕ(vxi) = blue for every i. Note that, since ϕxi is special, this coloring ϕ is possible only if n = 5, and it must be the
one depicted in Fig. 3 (with {v, w} = {y1, y2}). But for such coloring, we conclude that w(ϕ) = 45 < 3 · 24 (see Lemma 12
in the Appendix).

At last, suppose ϕv is edge-special and assume without loss of generality that there are vertices y and z with
ϕv(yz) = blue and all other edges of Kn − v are colored red. Let x1, . . . , xn−3 be the other vertices of Kn. Similarly as
before, we can easily conclude that ϕxi is not monochromatic and, therefore, is special for any 1 ⩽ i ⩽ n − 3. Note that
since ϕxi is special, we have ϕ(vxi) = red, and ϕ(vy) = ϕ(vz). If ϕ(vy) = ϕ(vz) = red, then ϕ would be edge-special
(yz would be the only blue edge of ϕ), a contradiction. Thus, we may assume that ϕ(vy) = ϕ(vz) = blue. Note that,
since ϕxi is special, this coloring ϕ is possible only if n = 5. Again, for such coloring, from Lemma 12, we conclude that
w(ϕ) = 45 < 3 · 24. □
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Fig. 3. Coloring of K5 isomorphic to the one of Lemma 12.

2.2. Graphs colored with exactly three colors

In the main result of this section (Lemma 9) we calculate a tight upper bound to the number of extensions of complete
graphs that use exactly three colors. As in Section 2.1, we start by computing the number of extensions of special colorings
on three colors.

Lemma 7. For all n ⩾ 4, if ϕ ∈ Φn(3) is a special coloring of Kn using exactly three colors, then

w(ϕ) = 2n
+ 3.

Proof. Let n ⩾ 4 be a fixed integer. Suppose first that ϕ ∈ Φn(3) is a vertex-special coloring, v ∈ V (Kn) is its
monochromatic vertex, say blue, and g1g2 ∈ E(Kn) is a green edge such that all the remaining edges are red. Let u be
the new vertex added to Kn to obtain Kn+1. Similarly to the proof of Lemma 4, we count the number of ways to extend ϕ

by considering cases according to the color of uv.
Case ϕ(uv) = blue. Since the vertex v is a monochromatic blue vertex, the fact that ϕ(uv) = blue does not restrict the

choices of the colors for the remaining edges. On the other hand, ϕv is the edge-special coloring for two colors. Thus, by
Lemma 4, there are 3 · 2n−2

+ 1 ways to color the remaining edges.
Case ϕ(uv) = red. Note that we will be able to use only colors red and blue on the edges from u to V (Kn) ∖ {v}. This

already implies that no rainbow triangle contains v. Note that ug1 and ug2 must have the same color, but there are no
extra restrictions to color the edges between u and V (Kn) − v − g1 − g2. Therefore, there are 2 · 2n−3 colorings for this
case.

Case ϕ(uv) = green. All edges between u and V (Kn) ∖ {v} must be blue or green. Note that, as all edges between
{g1, g2} and V (Kn)∖ {g1, g2, v} are red, ϕ(ug1) = ϕ(ug2), as otherwise we would have no color choice for the edge uy, for
any y ∈ V (Kn) ∖ {g1, g2, v} (recall that n ⩾ 4). On the other hand, once we choose the color of ϕ(ug1) the color of uy has
to be the same for every y ∈ V (Kn)∖ {g1, g2, v}. Thus, there are only two ways of coloring the remaining edges. Therefore,
we conclude that w(ϕ) = (3 · 2n−2

+ 1) + 2n−2
+ 2 = 2n

+ 3.
Suppose that ϕ ∈ Φn(3) is the edge-special coloring. Let b1b2 ∈ E(Kn) be the blue edge and g1g2 ∈ E(Kn) be the green

edge such that all the remaining edges are red. Let u be the new vertex added to Kn to obtain Kn+1. We consider the
(seven) possible ways to color the edges ub1 and ub2 (so that the triangle ub1b2 is not rainbow). On the description of
each case we list the values of (ϕ(ub1), ϕ(ub2)) considered.

Case (red, red): No matter how we color the edges between u and Kn − b1 − b2, there will be no rainbow triangle that
contains the vertices b1 or b2, so there is no extra restriction on the choices of the colors of those edges. If n ⩾ 5 then we
have that Kn − b1 − b2 is the edge-special coloring on two colors. Therefore, by Lemma 4, there are 3 · 2n−3

+ 1 ways to
color the edges between u and Kn − b1 − b2. On the other hand, if n = 4 we have that Kn − b1 − b2 is the monochromatic
coloring on K2 and, by Fact 2, we have 3 · 2 + 1 ways to color the edges between u and Kn − b1 − b2.

Cases (blue, blue) or (blue, red) or (red, blue): Each of these configurations only forbids us to use the color green on
the remaining edges. On the other hand, for all possible ways to color the remaining edges using colors red and blue, the
restriction is that ug1 and ug2 must have the same color. Therefore, there are 2 · 2n−4

= 2n−3 ways to color them.
Case (green, green): This configuration forbids us to choose the color blue for any remaining edges. But the coloring

ϕ restricted to the graph Kn − b1 − b2 uses only colors red and green, so using red and green for edges between u and
V (Kn) − b1 − b2 does not create any rainbow triangle. Thus, there are 2n−2 ways to color the remaining edges.

Cases (blue, green) or (green, blue): Each of these configurations forbids us to choose both green and blue for the
remaining edges. Thus, there is only one way to color the remaining edges.

In total, we obtain w(ϕ) = (3 · 2n−3
+ 1) + 3 · 2n−3

+ 2n−2
+ 2 = 2n

+ 3. □

Lemma 9 is the analogue of Lemma 6 for three colors, and its proof is also based on Lemma 3 and induction on n. It
shows that the special colorings are the only extremal ones in Φn(3). As with Lemma 6, in the proof of Theorem 1 we
will only need that w(ϕ) ⩽ 2n

+ 3 for every ϕ ∈ Φn(3). However, using induction, it is easier to prove that w(ϕ) < 2n for
non-special colorings in Φn(3).
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Fig. 4. All special colorings of K4 that use exactly three colors (up to isomorphism). These are particular cases of the second row of Fig. 1.

Fig. 5. Coloring of K6 isomorphic to the one of Lemma 16.

We will use the following simple fact.

Fact 8. Every Gallai coloring of K4 that uses exactly three colors is isomorphic to a special coloring. The special colorings of
K4 are depicted in Fig. 4.

Lemma 9. Given n ⩾ 4, let ϕ: E(Kn) → {red, blue, green} be a Gallai coloring with exactly three colors. Then, the following
holds:

(1) If ϕ is special, then w(ϕ) = 2n
+ 3.

(2) If ϕ is non-special, then w(ϕ) < 2n.

Proof. If ϕ is special, then we are done by Lemma 7. For the rest we use induction on n. So, assume that ϕ ∈ Φn(3) is a
non-special Gallai coloring.

By Fact 8, we may assume n ⩾ 5. For the inductive step to work we will need to have n ⩾ 6. The proof of the base
case n = 5 is tedious (but not so long), and we postpone it to the Appendix. Lemma 15 shows that, for every non-special
coloring ϕ ∈ Φ5(3), we have w(ϕ) ⩽ 31 < 25.

Now, suppose that n ⩾ 6 and that Lemma 9 holds for any Gallai colorings in Φn−1(3). By Fact 5, there exists a vertex v

such that ϕv still uses exactly three colors. If w(ϕv) < 2n−1 then, by Lemma 3, we have w(ϕ) ⩽ 2(2n−1
− 1)+ 1 = 2n

− 1.
Thus, we may assume that w(ϕv) ⩾ 2n−1. Then, by the inductive hypothesis, as ϕv uses all three colors, we conclude that
ϕv is special. We will consider separately the cases where ϕv is vertex-special and edge-special.

Suppose first ϕv is vertex-special and assume without loss of generality that there is a blue vertex w in ϕv , a unique
green edge g1g2, and let x1, . . . , xn−4 be the other vertices of Kn (note that since n ⩾ 6, the number of vertices in
{x1, . . . , xn−4} is at least two). Since ϕxi uses all three colors for any 1 ⩽ i ⩽ n − 4, we may assume that ϕxi is special,
as otherwise we would have w(ϕxi ) < 2n−1 and Lemma 3 would finish the proof. But for ϕxi to be edge-special, there
should be at least two colors that appear each only once in ϕxi , and this is not the case for colors red and blue (as n ⩾ 6).
Thus we may assume that ϕxi is vertex-special for any 1 ⩽ i ⩽ n− 4. But note that then w should be the monochromatic
(blue) vertex of ϕxi for any 1 ⩽ i ⩽ n − 4, from where we conclude that ϕ(vxi) = red for any 1 ⩽ i ⩽ n − 4. Therefore, ϕ
is vertex-special (with blue vertex w), a contradiction with the fact that ϕ is non-special.

At last, suppose ϕv is edge-special and assume without loss of generality that there are vertices b1 and b2 joined by
the only blue edge, vertices g1 and g2 joined by the only green edge, and let x1, . . . , xn−5 be the other vertices of Kn (note
that since n ⩾ 6 there is at least one vertex in {x1, . . . , xn−5}). Similarly as before (using Lemma 3) we can conclude that
ϕxi is special for any 1 ⩽ i ⩽ n − 5. For ϕxi to be vertex-special, there should be a monochromatic vertex w in ϕxi with
color c ∈ {red, blue, green} such that c does not appear in ϕw , but this is not possible. Thus we may assume that ϕxi

is edge-special for 1 ⩽ i ⩽ n − 5. But note that then v should be monochromatic in red in the coloring ϕxi . If n ⩾ 7,
then there are at least two vertices in {x1, . . . , xn−5} and we know that ϕ(vx1) = · · · = ϕ(vxn−5) = red, from where we
conclude that ϕ is edge-special, a contradiction. On the other hand, if n = 6, then it is not clear what the color of the
edge vx1 is. Clearly, if ϕ(vx1) = red, then we get that ϕ is edge-special, obtaining the desired contradiction. Thus, we may
assume that ϕ(vx1) ∈ {green, blue}, in which case we obtain the coloring depicted in Fig. 5. Therefore, w(ϕ) = 53 < 26

as necessary (by Lemma 16 in the Appendix). □
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2.3. Proof of Theorem 1

Let ci(n) = |Φn(i)|, for i ∈ {1, 2, 3}, be the number of Gallai colorings of Kn that use exactly i colors. Then,

c(n) = c1(n) + c2(n) + c3(n). (1)

Clearly, c1(n) = 3 for every n ⩾ 2, and c2(n) = 3 · (2(
n
2) − 2) for every n ⩾ 3. Also notice that c3(1) = c3(2) = c3(3) = 0.

In particular, c(2) = 3 and c(3) = 21.
So, our aim is to estimate c3(n) for n ⩾ 4. Fix i ∈ {1, 2, 3}. For each coloring ϕ in Φn(i) count the number of extensions

of ϕ such that the resulting coloring of E(Kn+1) uses all three colors, and let wi(n) be the maximum of those numbers.
Since there is no way to extend a monochromatic coloring of Kn to a Gallai coloring of Kn+1 that uses all three colors,

w1(n) = 0 for every n. Using Lemma 6, for n ⩾ 3, we obtain w2(n) ⩽ (3 · 2n−1
+ 1) − 2n

= 2n−1
+ 1. In fact, for any

non-monochromatic 2-coloring of Kn, say with red and blue, its number of extensions is at most 3 · 2n−1
+ 1 and among

those there are exactly 2n extensions that are valid extensions but use only colors red and blue. Using Lemma 9, for n ⩾ 4,
we have w3(n) ⩽ 2n

+ 3. And because c3(3) = 0, the following holds for every n ⩾ 3:

c3(n + 1) ⩽ w1(n)c1(n) + w2(n)c2(n) + w3(n)c3(n)

⩽ 0 + (2n−1
+ 1) · (3 · 2(

n
2) − 6) + (2n

+ 3) · c3(n) (2)

⩽ 3 · (2n−1
+ 1) · 2(

n
2) + (2n

+ 3) · c3(n). (3)

We claim that c3(n) ⩽ 7n 2(
n
2) for every n. Setting n = 3 at inequality (2) gives c3(4) ⩽ 18 · 5 = 90 < 7 · 4 · 2(

4
2). So, the

claim holds for every n ⩽ 4. Now assume that it holds for some particular n ⩾ 4 and let us show that it holds for n + 1.
From inequality (3), we have

c3(n + 1) ⩽ 3 · (2n−1
+ 1) · 2(

n
2) + (2n

+ 3) · 7n · 2(
n
2)

⩽ 7(n + 1) 2(
n+1
2 ). (4)

To see that (4) holds, note that 2(
n+1
2 ) = 2n 2(

n
2). Finally, using (1), we have

c(n) ⩽ 3 +

(
3 · 2(

n
2) − 6

)
+ 7n 2(

n
2)

⩽ 3 · 2(
n
2) + 7n 2(

n
2)

⩽ 7(n + 1) 2(
n
2). □

Remark. To keep the proof simple, we did not optimize the constant multiplying (n+1) above. However, this is not hard
to do. If we consider a function f (n) such that f (1) = f (2) = f (3) = 0 and that satisfies the analogous of (3) with equality,
that is,

f (n + 1) = 3 · 2n
· 2(

n
2) + (2n

+ 3)f (n),

it is trivial to see (by induction) that c3(n) ⩽ f (n) for every n. To solve such recursion we can use the substitution
f (n) = k(n) 2(

n
2). We get the linear recursion

k(n + 1) = 3 +

(
1 +

3
2n

)
k(n),

that can be solved exactly with standard methods, noting also that the product
∏

∞

n=3

(
1 +

3
2n

)
is convergent. It turns out

that k(n) is asymptotically approximately tn, for some constant t < 7. Similarly, we could also define f (n) using inequality
(2) instead of (3), but again, this would only improve this bound slightly.

3. Concluding remarks

Recall that ci(n) = |Φn(i)|, for i ∈ {1, 2, 3}, is the number of Gallai colorings of Kn that use exactly i colors from a total
of 3 colors. In Table 1 we show the exact values of c1(n), c2(n), c3(n), and c(n) for n ⩽ 8. These values were obtained by
enumerating (with a computer program) all Gallai colorings of Kn.

The previous best known upper bound on the number of Gallai colorings of Kn was 3
2 (n − 1)! · 2(

n−1
2 ). In Theorem 1

we improve this substantially showing that the number of Gallai 3-colorings of Kn is at most 7(n + 1)2(
n
2). But since the

lower bound is 3 · 2(
n
2) − 3, there is still a large gap between the lower and upper bounds. Even though Table 2 considers

only very small values of n, it may indicate that c(n) is asymptotically closer to the lower bound. However, in Table 2, we
compute the ratios of our upper bound to c(n) and of c(n) to that lower bound. We found, surprisingly, that neither of
those are monotone. Again, this could simply be some artifact due to the fact that n is very small, but it could also indicate
that there is a term multiplying 2(

n
2) that is not a constant. It would be interesting to fully understand the behavior of

c(n) (even only for large n). It would also be interesting to study what happens when we consider more colors.
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Table 2
Comparison between c(n) and the lower and upper bounds.

n c(n) 3 · 2(
n
2) − 3 7(n + 1)2(

n
2) 7(n + 1)2(

n
2)/c(n) c(n)/

(
3 · 2(

n
2) − 3

)
2 3 3 42 14.00 1.00
3 21 21 224 10.66 1.00
4 279 189 2,240 8.02 1.47
5 6,129 3,069 43 008 7.01 1.99
6 210,987 98,301 1,605,632 7.61 2.14
7 11,813,949 6,291,453 117,440,512 9.94 1.87
8 1,212,514,191 805,306,365 16,911,433,728 13.94 1.50
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Appendix

Here, we compute the number of Gallai extensions of some particular colorings of K4 and K5. We also describe all Gallai
3-colorings of K5 that do not have a monochromatic vertex (up to isomorphism). In most proofs of this appendix we use
repeatedly, and sometimes implicitly, the following trivial fact.

Fact 10. Let ϕ: E(Kn) → {red, blue}. Consider an extension ϕ′ of ϕ to a Gallai coloring of E(Kn+1) with colors red, green, or
blue. Let u be the vertex added to Kn to obtain Kn+1. If vw is an edge of the initial Kn, say with color blue, and ϕ′(uv) = green,
then ϕ′(uw) cannot be red. In particular, if there is a vertex v in the initial Kn such that ϕ′(uv) = green, then, for every vertex
w in Kn − v, we have ϕ′(uw) ∈ {green, ϕ(vw)}.

Let us start with the colorings of E(K4) isomorphic to those depicted in Fig. 2. For convenience, we show Fig. 2 again
below.

Lemma 11. Let c ∈ {red, blue} and consider a coloring ϕ: E(K4) → {red, blue}. Then the following holds:

(i) If there are only two edges with color c and they form a path, then w(ϕ) = 23 (see Fig. 2-(i)).
(ii) If there are only three edges with color c and they form a path, then w(ϕ) = 21 (see Fig. 2-(ii)).
(iii) If there are only two edges with color c and they form a matching, then w(ϕ) = 23 (see Fig. 2-(iii)).

Proof. The proofs of all items are similar and simple, but we show them here for completeness. Let ϕ: E(K4) → {red, blue}
and without loss of generality assume c = red. Let v be a new vertex and add all edges between v and the four vertices
of K4. Let us count in how many ways we can color the edges incident to v, with colors red, blue, and green without
creating rainbow triangles.

Clearly, there are exactly 24 possible ways to color the edges incident to v without using color green. By Fact 10, there
are exactly four ways in which we use exactly one green edge (we can only choose which edge receives color green, and
the color of the remaining edges are forced, as we are not considering to use another green). Furthermore, clearly there
is only one way in which all four edges are green. This adds up to 21 possible extensions. It remains to count the number
of extensions such that there are two or three green edges incident to v.
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Proof of item (i). Let {x1, x2, x3} be a blue triangle where x1 is a blue vertex, and let x4 be the other vertex of K4, so
ϕ(x2x4) = ϕ(x4x3) = red. By Fact 10, there is only one way to have exactly three green edges incident to v, which is
ϕ(vx2) = ϕ(vx3) = ϕ(x4v) = green (and then ϕ(vx1) is forced to be blue). Moreover, the only way to have exactly two
green edges incident to v is with ϕ(vx2) = ϕ(vx3) = green (the colors of the other edges are forcibly determined and
valid). This gives, in total, 2 + 21 = 23 extensions of ϕ to a Gallai coloring.

Proof of item (ii). Let W ⊂ V (K4) be any set with two or three vertices. Note that there is always a vertex y ∈ V (K4)∖W
such that y has a blue and a red neighbor in W . So, if the green edges incident to v are exactly those with an endpoint
in W , by Fact 10, there is no color available for vy. Therefore, there is no way of extending ϕ to a Gallai coloring using
exactly two or three green edges incident to v. So there are only the 21 previous extensions to a Gallai coloring.

Proof of item (iii). Let {x1, x2, x3, x4} be the set of vertices of K4 such that x1x2 and x3x4 are the red edges, and all other
edges are blue. Let W ⊂ V (K4) be any set with exactly three vertices. As in the previous item, the vertex y ∈ V (K4)∖W has
a red and a blue neighbor in W , so there is no extension of ϕ that uses exactly three green edges incident to v. On the other
hand, if we want exactly two green edges incident to v, then there are exactly two possible ways: ϕ(vx1) = ϕ(vx2) = green
or ϕ(vx3) = ϕ(vx4) = green (the colors of the other edges are forcibly determined). This gives, in total, 2 + 21 = 23
extensions of ϕ to a Gallai coloring. □

Lemma 12 provides the number of extensions of colorings isomorphic to the one in Fig. 3.

Lemma 12. Let c ∈ {red, blue} and consider a coloring ϕ: E(K5) → {red, blue}. If there are only three edges with color c
and they form a triangle, then w(ϕ) = 45.

Proof. Let ϕ: E(K5) → {red, blue} be a coloring as in the statement of this lemma and assume without loss of generality
that c = red. Let X = {x1, x2, x3} be the vertices that form the red triangle, Y = {y1, y2} the other two vertices of K5, and
let v be a new vertex adjacent to all other vertices. Let us show that there are 45 ways to color the edges incident to v,
with colors red, blue, and green without creating rainbow triangles.

First of all notice that there are exactly 32 possible ways to color the edges incident to v without using green edges.
Now assume that there is at least one green edge incident to v. If there is a green edge between v and Y , then there are no
red edges between v and X , by Fact 10. But since the edges inside X are red, we conclude that ϕ(vx1) = ϕ(vx2) = ϕ(vx3).
Thus, there are only 2 possibilities of colors for the edges between v and X (they are all blue or all green). Since there are
3 ways to color the edges between v and Y using color green at least once, this yields 6 extensions of ϕ. One may check
that all 6 extensions are valid.

It remains to count the number of extensions with no green edges between v and Y and at least one green edge
between v and X . In this case the edges between v and Y must be blue, and those between v and X must be red or green
(with at least one green edge). Then, there are 7 possible extensions of ϕ. Therefore, in total there are 32 + 6 + 7 = 45
extensions of ϕ to a Gallai coloring. □

The structure of the proof of the next result, Lemma 13, is very similar to the one of Lemma 7, but we include its proof
here for completeness.

Lemma 13. Let ϕ be a non-special Gallai coloring of K5 that uses exactly three colors and has a monochromatic vertex v.
Then, w(ϕ) ⩽ 31.

Proof. Let ϕ be a non-special Gallai coloring of K5 that uses exactly three colors and let v ∈ V (Kn) be a monochromatic
vertex, say blue. Suppose first that ϕv uses all three colors. Recall that the only two colorings of K4 = K5 − v that use
three colors are the special colorings. So, by Lemma 7, we have w(ϕv) = 24

+ 3 = 19.
Now, we follow the same steps as in the proof for vertex-special colorings in Lemma 7. We add a new vertex u and

we want to count in how many ways we can color all edges between u and V (Kn). As before, we consider the same cases
according to the color of uv.

Case ϕ(uv) = blue. This imposes no restriction on the color of the edges between u and V (K5) ∖ {v}. Therefore, the
number of extensions in this case is simply w(ϕv) = 24

+ 3 = 19.
Case ϕ(uv) = red. We are able to use only colors red and blue on the edges between u and V (Kn) ∖ {v}. This would

give at most 24 extensions. However, for each green edge, say g1g2, induced by V (Kn)∖ {v}, the colors of ug1 and ug2 must
be the same (otherwise u, g1, g2 would be rainbow). As we have at least one green edge, w(ϕv) ⩽ 23, with equality if and
only if there is only one green edge.

Case ϕ(uv) = green. Similar to the previous case, we obtain w(ϕv) ⩽ 23, with equality only if there is only one red
edge induced by V (Kn) ∖ {v}.

This would give a total of 19+8+8 = 35 extensions, but to have exactly this amount, it must be the case where there is
only one red and only one green edge. In this case, we would have an edge-special coloring, that is not possible. Therefore,
either there are two green or two red edges, in which case the number of extensions of ϕ is at most 19 + 8 + 4 = 31.
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Fig. 6. Colorings of K5 that are non-special, have no monochromatic vertex and use exactly three colors.

Now, assume that ϕv uses only two colors. As all edges incident to v are blue, and we must use all three colors, we
must use colors red and green on ϕv . It is a well-known fact that a 2-colored Kn must have a monochromatic spanning
tree [20, Theorem 2.2]. Suppose without loss of generality that such spanning tree is red. Furthermore, notice that if there
is only one green edge, then the original coloring, ϕ, on K5 will be vertex-special and that is not possible.

Case ϕ(uv) = blue. The number of extensions in this case is simply w(ϕv), which by Lemma 6 is at most 3 ·23
+1 = 25.

Case ϕ(uv) = red. We are able to use only colors red and blue on the edges between u and V (Kn) ∖ {v}. This would
give at most 24 extensions. But, since ϕv has at least two green edges, there are at most 22

= 4 ways to color the edges
between u and V (Kn) ∖ {v}.

Case ϕ(uv) = green. All edges between u and V (Kn) ∖ {v} must be blue or green. The fact that ϕv has a red spanning
tree implies that all edges between u and V (Kn) ∖ {v} must receive the same color. So, there are only two ways to color
those edges.

In total, there are at most 25 + 4 + 2 = 31 extensions. □

The colorings of K5 depicted in Fig. 6 are important for the proof of the next result, Lemma 14.

Lemma 14. Every non-special Gallai coloring of K5 that uses exactly three colors and does not have a monochromatic vertex
is isomorphic to one of the colorings depicted in Fig. 6.

Proof. By Fact 5, there exists a vertex v such that ϕv uses all three colors. Since K5 − v has only 4 vertices, it follows
that ϕv is a special coloring. Let V (K5 − v) = {a, b, c, d}. By Lemma 7, we have w(ϕv) = 19. This means that there are 19
ways to color the edges between v and {a, b, c, d} for every Gallai coloring of V (K5 − v) with exactly 3 colors.

We consider separately the cases where ϕv is vertex-special or edge-special. Assume first that ϕv is vertex-special
and, without loss of generality, that a is monochromatic in blue (inside K4), cd is green, and the other two edges are red
(see Fig. 4). We partition the set of the 19 extensions of ϕv into three classes (as in the proof of Lemma 7), according
to the color of the edge va. Following the counting in the proof of Lemma 7, for va being blue, red, or green, we have,
respectively, 13, 4, and 2 extensions (19 = 13 + 4 + 2). If va were blue, then v would be a monochromatic vertex in ϕ,
a contradiction (so the first 13 extensions are not feasible). If va is red, then vb, vc , and vd must be either red or blue.
This implies that ϕ(vc) = ϕ(vd) (as cd is green). Among the four options for the colors of vb, vc and vd, there is one in
which v becomes monochromatic in red. From the other three colorings, two are isomorphic to the coloring in Fig. 6-(A)
(swapping colors red with blue in one of the colorings) and the third one is the coloring 6-(B). Finally, assume that va is
green. In this case, vb, vc , and vd must be either green or blue and must all have the same color. From these two options,
one of them makes v become monochromatic (green). The other one is given in Fig. 6-(C).

Now, consider the case where ϕv is edge-special, say ab is blue, cd is green, and the other four edges are red. Again,
following the cases in Lemma 7, we may partition the set of extensions of ϕv according to the colors of the edges va
and vb. Lemma 7 gives 7 + 3 · 2 + 4 + 2 = 19 extensions. All of them are shown in Fig. 7. Three of them, (7-(1), 7-(9),
and 7-(17)), have a monochromatic vertex (so ϕ cannot be one of them). Ten of them, (7-(3), 7-(4), 7-(6), 7-(11), 7-(13),
7-(14), 7-(15), 7-(16), 7-(18), and 7-(19)), have a vertex z (that we marked with a different color in Fig. 7) such that ϕz is
isomorphic to a vertex-special K4 on 3 colors. Therefore, they were already treated in the case where ϕv is vertex-special.
Four of the remaining colorings, (7-(2), 7-(5), 7-(10), and 7-(12)), are isomorphic to Fig. 6-(D). And the remaining two
colorings, (7-(7) and 7-(8)), are isomorphic to the one in Fig. 6-(E). □
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Fig. 7. Colorings of K5 with a vertex v such that K5 − v is a 3-colored edge-special K4 .

Lemma 15. Every non-special Gallai coloring of K5 that uses exactly three colors has at most 31 extensions.

Proof. Let ϕ ∈ Φ5(3) be a non-special Gallai coloring of K5 that uses exactly three colors. If K5 has a monochromatic
vertex, we are done by Lemma 13. So, assume this is not the case. By Lemma 14, we only need to compute the number
of extensions for each one of the colorings in Fig. 6. We let V (K5) = {x1, . . . , x5} as in Fig. 6.

We split the colorings into five types, A, B, D, C, and E (following the labels in Fig. 6). Let u be a vertex not in K5. In the
colorings of type B, D, C, and E there exists an edge, x1x2, such that all edges from {x1, x2} to {x3, x4, x5} have the same
color. So we can first color the edges ux1 and ux2, and then use Fact 10 to restrict the colors allowed for the edges from u
to {x3, x4, x5}. We organize the seven ways to color the edges ux1 and ux2 into four cases, following the same structure as
in the proof of the edge-special case of Lemma 7. To keep it compact, we will write sentences of the form ‘‘case {rr, bg}’’
to mean (ϕ(ux1), ϕ(ux2)) ∈ {(red, red), (blue, green)}.

Extensions of (B): For the cases {bb}, {rb, rr, br}, {gg}, and {gr, rg}, in this order, we add to a total of (3 · 22
+ 1)+ 3 · 4+

2 + 2 · 1 = 29 extensions. For case {bb} we used Lemma 4, and for case {gg} we used that there is a red spanning
tree in {x3, x4, x5} (so all edges from u to this set are either green or blue, hence they must have the same color).
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Extensions of (C): For the cases {bb}, {gb, gg, bg}, {rr}, and {rg, gr}, in this order, we add to a total of (3 · 22
+ 1) + 3 ·

2 + 4 + 2 · 1 = 25 extensions. For case {bb} we used Lemma 4, and for cases {gb, gg, bg} we used that {x3, x4, x5}
has a red spanning tree.

Extensions of (D): For the cases {rr}, {gr, gg, rg}, {bb}, and {bg, gb}, in this order, we add to a total of (3 · 22
+ 1) + 3 ·

2 + 8 + 2 · 1 = 29 extensions. For case {rr}, we have used Lemma 4. For the cases {gr, gg, rg} we have used that
{x3, x4, x5} has a blue spanning tree.

Extensions of (E): For the cases {rr}, {gr, gg, rg}, {bb}, and {bg, gb}, in this order, we add to a total of (24
− 1) + 3 · 2 +

8 + 2 · 1 = 31 extensions. For case {rr}, we have used Fact 2, and for case {gr, gg, rg} we used that {x3, x4, x5} has
a blue spanning tree.

Finally, a coloring of type A has to be treated in an ad-hoc way.

Extensions of (A): We consider cases depending on the colors of ux4 and ux5. For i ∈ {1, 2, 3}, we denote ϕ(uxi) by ci
and consider ci ∈ {red, green, blue}.

Case (ϕ(ux4), ϕ(ux5)) = (blue, blue) This imposes no restriction on the colors c1 and c2, but forces c3 ∈ {blue, red}.
If none of c1, c2, and c3 is green, we have a valid Gallai coloring (as {x1, . . . , x4} also only has red and blue
edges). This gives 23

= 8 colorings. It remains to check the cases where either c1 or c2 is green. If c1 is green,
then we must have c2 = c3 = red. If c2 is green, then c1 = red and c3 = blue. Furthermore, it is not possible to
have c1 = c2 = green (as there would be no color available for c3). This gives a total of 8 + 2 = 10 colorings.

Case (ϕ(ux4), ϕ(ux5)) = (red, red) There is no restriction for c3, but we must have {c1, c2} ⊆ {red, blue}. If none of
c1, c2 and c3 is green, we have 23

= 8 valid colorings. Otherwise, c3 is green and this forces c1 = red and
c2 = blue. So we have 9 colorings in this case.

Cases in (ϕ(ux4), ϕ(ux5)) ∈ {(green, blue), (blue, green)} The green edge (among ux4 and ux5) forces that each of
c1 and c2 must be green or blue. While the fact that {ϕ(ux4), ϕ(ux5)} = {green, blue} forces c3 = red. Now
(c3 = red) H⇒ (c2 = blue) H⇒ (c1 = blue). So, for each of the two choices for ux4 and ux5 there is only one
way to complete the coloring. This gives us 2 colorings.

Cases in (ϕ(ux4), ϕ(ux5)) ∈ {(red, green), (green, red)} The colors of ux4 and ux5 already imply that c1 = c2 = blue
and c3 ∈ {red, green}. But now, (c1 = blue) H⇒ (c3 = red). As in the previous case, we have 2 colorings.

Case (ϕ(ux4), ϕ(ux5)) = (green, green) We must have {c1, c2} ⊆ {green, blue} and c3 ∈ {green, red}. Furthermore,
the color of c2 determines the colors of c1 and c3. So, we have 2 colorings in this case.

Total These add up to a total of 10 + 9 + 2 + 2 + 2 = 25 extensions.

As in all cases we had at most 31 extensions, the lemma is proved. □

Lemma 16 provides the number of extensions of colorings isomorphic to the one in Fig. 5.

Lemma 16. Let ϕ be a Gallai coloring of K6 with exactly three colors that contains a matching of size three colored with
exactly two colors and all the remaining edges are colored with the third color. Then, w(ϕ) = 53.

Proof. Let ϕ be as in the statement. Let b1b2, b3b4, and g1g2 be the edges of the matching and suppose without loss of
generality that ϕ(b1b2) = ϕ(b3b4) = blue and ϕ(g1g2) = green. We will count the number of ways to extend ϕ to a Gallai
coloring of K7 when we add a vertex u to the initial K6.

Note that all edges between {b1, b2} and V (K6) ∖ {b1, b2} are red. In our proof we consider separately some of the
(seven) ways to color the edges ub1 and ub2 avoiding rainbow triangles.

Case (ϕ(ub1), ϕ(ub2)) = (red, red): In this case we do not have any additional restrictions on the choices of the colors
of the remaining edges. Also, note that the coloring of the remaining graph is edge-special with three colors. Thus, by
Lemma 7, we have 24

+ 3 ways to extend the coloring.
Cases (ϕ(ub1), ϕ(ub2)) = (green, green): We cannot use color blue on the remaining edges. So, we can only use red or

green. Because b3b4 is blue, the edges ub3 and ub4 must have the same color. Other than that, there is no other restriction,
so we have 23 ways to color those remaining edges.

Cases (ϕ(ub1), ϕ(ub2)) ∈ {(blue, blue), (red, blue), (blue, red)}: Analogously to the previous case, all remaining edges
must be red or blue. Additionally, because g1g2 is green, ug1 and ug2 must have the same color. Thus, there are 23

extensions in each of the three cases.
Cases (ϕ(ub1), ϕ(ub2)) ∈ {(blue, green), (green, blue)}: These cases allow us to use only the red color on the remaining

edges.
In total, there are w(ϕ) = 19 + 8 + 3 · 8 + 2 = 53 extensions. □
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