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Abstract. An edge coloring of the n-vertex complete graph, Kn, is a Gallai coloring if it does
not contain any rainbow triangle, that is, a triangle whose edges are colored with three distinct
colors. We prove that for n large and every k with k ≤ 2n/4300, the number of Gallai colorings
of Kn that use at most k given colors is (

(
k
2

)
+ on(1)) 2(n

2). Our result is asymptotically best
possible and implies that, for those k, almost all Gallai k-colorings use only two colors. However,
this is not true for k ≥ 2n/2.

§1. Introduction

An edge coloring of the complete graph on n vertices, Kn, is a Gallai coloring if it contains no
rainbow K3, that is, no copy of K3 in which all edges have distinct colors. Here, we always use
k-coloring to refer to an edge coloring that uses (not necessarily all) colors from a set of k colors;
in contrast, for ` ≤ k, we say a graph G is `-colored, if its edges are colored with exactly ` colors
(out of k given colors).

The term Gallai coloring was used by Gyárfás and Simonyi in [15], though those colorings
have also been studied under the name Gallai partitions by Körner, Simonyi and Tuza in [19].
The terminology is due to a close relation to a result in Gallai’s influential original paper [12]
– translated to English with added comments in [13]. The above mentioned papers are mostly
concerned with structural and Ramsey-type results about Gallai colorings.

Following a recent trend of working on problems about counting certain colorings and analyzing
the typical structure of them, for integers k ≥ 1 and n ≥ 2, we are interested in the problem of
counting the number, c(n, k), of Gallai k-colorings of Kn (that use a given set of k colors). In
this counting, we consider the vertices of Kn as labeled.

The related problem of counting colorings of graphs such that every color class does not contain
a particular graph F was studied originally by Erdős and Rothschild (see, e.g., [8]) and has
motivated a number of results (for example [1, 16, 17, 20]) and it was generalized to colorings
that avoid other coloring patterns in [4]. In turn, Gallai colorings have surprising relations to
Information Theory [18] and a generalization of the (weak) Perfect Graph Theorem [5], and has
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also been generalized to non-complete graphs [14] and hypergraphs [7]. Recently, there has also
been a trend in Ramsey-type problems that involve Gallai colorings (see [6, 10,11,21,22]).

In this context, the problem of counting Gallai colorings is a very natural one and has been
“almost” overlooked. A trivial lower bound for c(n, k), when k ≥ 2, is given by the colorings that
use at most two colors: c(n, k) ≥

(k
2
)
(2(n

2) − 2) + k.
In [3], its was proved that c(n, 3) ≤ 7(n + 1) 2(n

2), for every n ≥ 2. Previous bounds for c(n, 3)
were obtained by Falgas-Ravry, O’Connell, Strömberg and Uzzell [9], of order 2(1+on(1))(n

2) using
the container and entropy method, and around the same time Benevides, Hoppen and Sampaio
[4] gave a bound of order (n− 1)! 2(n

2).
The main purpose of this paper is to prove that the lower bound for c(n, k) is asymptotically

sharp for k ≤ 2n/4300. We point out that, in [15], it was proved that any Gallai coloring of Kn

uses at most n− 1 colors. In spite of this, the definition of c(n, k) makes sense even for k ≥ n, as
in a Gallai k-coloring we do not have to use all k colors.

Theorem 1. For n large enough and every k with 2 < k ≤ 2n/4300, we have

c(n, k) =
((

k

2

)
+ on(1)

)
2(n

2),

where on(1) tends to zero exponentially fast as n tends to infinity.

This implies that almost all Gallai k-colorings of Kn use only two colors, for k ≤ 2n/4300.
In other words, in this range, the typical structure of a Gallai k-coloring is simply that of a
two-coloring. On the other hand for k ≥ 2n/2, the statement of Theorem 1 would not be true.
To prove this, we consider another type of colorings that we call star colorings (also called
lexicographic colorings). For any ordering of the vertices, say v1, . . . , vn, and a fixed (n− 1)-tuple
of colors, say (c1, . . . , cn−1), for every i < j, color the edge vivj with color ci. For an easy lower
bound on c(n, k), to avoid a messy double counting, we count only the star colorings such that
c1, . . . , cn−1 are distinct. Thus, for n ≥ 4, we have,

c(n, k) ≥ n!
2 k(k − 1) . . . (k − n + 2) ≥ kn−1.

(above we have divided the n! by 2, because swapping vn−1 with vn yields the same colorings).
For k ≥ 2n/2, we have c(n, k) ≥ 2n(n−1)/2 = 2(n

2) (so it is already false that most Gallai colorings
use only 2 colors). Moreover, for k � 2n/2, the proportion of Gallai colorings that use at most 2
colors tends to zero.

In our proofs, the on(1) term in Theorem 1 can be taken exponentially small in n, as in
on(1) ≤ 2−n/150. In other to keep the calculation clean, we did not try to optimize either the
on(1) or the constant 1/4300 in its statement. The same method could be fine tuned to yield a
larger constant, but probably still far from (the best possible target) 1/2.

Our proof is self contained with the exception of two (elementary) results from [15] (whose
proofs are also short, we encourage the reader to look at them). Furthermore, our proofs are
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elementary, based on how to classify the colorings while counting the number of ways to extend
them. It came recently to our attention that, independently, Balogh and Li [2] proved a similar
upper bound, but for k constant and n large using the container and stability method.

In this paper, we also show (see Corollary 7) that

c(n, k) ≤ (k − 1)n 2(n
2),

for every n ≥ 2 and k ≥ 2.
The following two results from [15] shall be useful to us.

Theorem 2 (see Theorem 2.1 or 2.2 of [15]). Every Gallai coloring of a complete graph Kn

contains a monochromatic spanning tree.

Theorem 3 (Theorem 3.1 of [15]). Every Gallai coloring of Kn has a color with maximum degree
at least 2n/5.

In this paper all logarithms are on base 2. We omit the floor and ceiling functions as long
as they do not affect the calculations. For any natural number n, we denote {1, . . . , n} by [n].
Moreover, whenever we talk about three colors we refer to them as red, green and blue.

§2. Proof of the main result

Let Φn→k be the set of all Gallai colorings of Kn that use colors in [k]. So, each element of
Φn→k is a function ϕ : E(Kn)→ [k] and c(n, k) = |Φn→k|. For any Gallai coloring ϕ of E(Kn),
we denote by w(ϕ, k) the number of ways to extend ϕ to a Gallai coloring of E(Kn+1) where the
new edges receive colors from [k] (regardless of how many colors actually appear in ϕ).

We start with the following trivial fact that calculates the number of extensions of a monochro-
matic coloring. This fact and Lemma 5 are generalizations of lemmas from [3].

Fact 4. Let k and n be positive integers and ϕ ∈ Φn→k be a monochromatic coloring of the edges
of Kn. Then,

w(ϕ, k) = (k − 1)2n − (k − 2).

Proof. Without loss of generality, assume that all edges of Kn are colored blue. Let {u} =
V (Kn+1) r V (Kn). Notice that in any extension of this coloring we can only use one color
different from blue. So, for each choice of the other color (among the other k − 1 available), we
have 2n extensions. As the extension in which all edges are blue is counted k − 1 times, the total
number of extensions is (k − 1)2n − (k − 1) + 1, as claimed. �

Lemma 5. Let k and n be positive integers and ϕ ∈ Φn→k be any Gallai k-coloring of Kn. If
ϕ′ ∈ Φn+1→k is an extension of ϕ to E(Kn+1), then

w(ϕ′, k) ≤ 2w(ϕ, k) + (k − 2).
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Proof. Let V = V (Kn). Let ϕ′ be an extension of ϕ to E(Kn+1) with at most k colors and u /∈ V

be the new vertex (added to obtain Kn+1). To count the number of Gallai extensions of ϕ′ to
E(Kn+2), we will add a new vertex x and all edges from x to V ∪ {u}. We first color the edges
from x to V . If we let t = w(ϕ, k), there are t colorings, say ϕ1, . . . , ϕt, of the edges from x to V .
For each i ∈ [t], we let mi be the number of ways we can color the edge ux given that we have
colored the edges from x to V as in ϕi. Clearly, mi ∈ {0, 1, . . . , k} and w(ϕ′, k) =

∑t
i=1 mi.

Fix any i ∈ [t]. Recall that the edges from u to V are already colored (in ϕ′). If there is any
vertex v ∈ V such that ϕ′(xv) 6= ϕi(uv), then the only colors that can be used for ux are ϕ′(xv)
and ϕi(uv), then mi ≤ 2. Therefore, the only way to have mi ≥ 3 is when the coloring ϕi is such
that ϕi(xy) = ϕ′(uy) for every y in V , and for such coloring we have mi = k. This implies that∑t

i=1 mi ≤ 2(t− 1) + k = 2t + (k − 2). �

We remark that when ϕ is a monochromatic coloring and ϕ′ is its monochromatic extension,
by Fact 4, we have w(ϕ, k) = (k− 1)2n − (k− 2) and w(ϕ′, k) = (k− 1)2n+1 − (k− 2). Therefore,
w(ϕ′, k) = 2w(ϕ, k) + (k − 2), which implies that Lemma 5 is best possible.

2.1. Extensions of graphs that use exactly one color. We start by proving an easy lemma
that says that all Gallai k-colorings of Kn have at most as many extensions to a Gallai k-coloring
of Kn+1 as the monochromatic colorings. This also implies our general (but weak) upper bound
on c(n, k). As we shall see later, most of the Gallai k-colorings have significantly less number
of extensions than the monochromatic ones, and this fact will imply a better bound for c(n, k).
However, the weak upper bound will also be useful in our proof.

Lemma 6. For positive integers k and n, and every Gallai coloring ϕ ∈ Φn→k, we have

w(ϕ, k) ≤ (k − 1)2n − (k − 2).

Proof. The proof is by induction on n. The result clearly holds for n = 1 and n = 2. Now,
assume that n ≥ 2, and w(ϕ, k) ≤ (k − 1)2n − (k − 2) for every ϕ ∈ Φn→k. Let ϕ′ be any Gallai
k-coloring of Kn+1. Take any vertex v ∈ V (Kn+1) and let ϕ be the restriction of the coloring ϕ′

to the edges of Kn+1 − v. Lemma 5 implies that

w(ϕ′, k) ≤ 2w(ϕ, k) + (k − 2) ≤ 2((k − 1)2n−1 − (k − 2)) + (k − 2) = (k − 1)2n − (k − 2). �

Remark. It also follows from an analogous induction argument that the only colorings that
achieve this maximum are the monochromatic ones, but we will not need this fact.

Corollary 7. For integers n, k ≥ 2 we have c(n, k) ≤ (k − 1)n 2(n
2).

Proof. For each fixed k ≥ 2, we use induction on n ≥ 2. For the base case, when n = 2, we are
simply saying that k ≤ (k − 1)2 · 21, which is true for k ≥ 2. Now, assuming the result holds for
some n ≥ 2, by Lemma 6, we have

c(n + 1, k) =
∑

ϕ∈Φn→k

w(ϕ, k) ≤ (k − 1)2n · c(n, k) ≤ (k − 1)n+1 2(n+1
2 ). �
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2.2. Colorings that are rare or have few extensions. Due to the results of the previous
section, one may hope that the k-colorings that are “close to being monochromatic” are those
that have the most extensions. Our proof of Theorem 1 does not require us to prove precisely
this. But we do show that whenever we have a 2-coloring where both colors are used many times,
then we have few extensions.

Lemma 8. For every s, m, k ≥ 2, every 2-coloring ϕ of Km such that both colors are used
more than 3sm times satisfies w(ϕ, k) ≤ 2m + km2m−0.4s. Furthermore, at most km2m−0.4s such
extensions use a color that is not used in ϕ.

Proof. For k = 2 the result is trivial, since there are at most 2m extensions. Let k ≥ 3.
Let ϕ be a coloring of E(Km) as in the statement with colors red and blue. As before, let
u ∈ V (Km+1) r V (Km), so that we want to count the number of ways to color the edges from u

to V (Km). First, note that there are 2m ways to extend ϕ to a Gallai coloring of Km+1 using
only red and blue. Secondly, note that using two new colors (that is, different from red and blue)
will immediately create a rainbow triangle. Thus, it remains to show that there are at most
km2m−0.4s extensions that use exactly one new color, say green.

We claim that there exists {(r1, u1, b1), (r2, u2, b2), . . . , (rs+1, us+1, bs+1)}, a set of disjoint
triples of vertices of Km such that ϕ(uiri) = red and ϕ(uibi) = blue for all i ∈ [s + 1]. Indeed,
assume that the maximum set of such disjoint triples has size s. This implies that all edges inside
V (Km)−

⋃s
i=1{ri, ui, bi} have the same color, say blue. So, the number of red edges is at most

3sm, a contradiction.
Fix a vertex v ∈ V (Km). Suppose that we want to build an extension ϕ′ of ϕ such that

ϕ′(uv) = green. Let us count in how many ways we can complete the extension ϕ′. Note that, for
any vertex z ∈ V (Km) r {v}, (as ϕ(vz) is not green) ϕ′(uz) must be either green or ϕ(vz). So,
assuming ϕ′(uv) = green, there are at most 2 choices for every other edge. However, we claim
that for every i ∈ [s + 1] such that v /∈ {ui, ri, bi}, there are at most 6 ways to color the set of
edges {uui, uri, ubi}.

To see this, fix i such that v /∈ {ui, ri, bi} and assume that ϕ(vui) = red (the case ϕ(vui) = blue
is analogous). Recall that ubi must receive either green or ϕ(vbi). In the case ubi is green, then
uui must also be green (looking at the triangles uvui and ubiui) and we have (at most) 2 options
for the color of uri. In the case ubi has color ϕ(vbi), we trivially have at most 4 options for the
colors of uui and uri. This gives a total of at most 6 ways to color the set {uui, uri, ubi}.

Finally, we count how many extensions of ϕ use one new color (with some room to spare). We
have m options to choose a vertex v, have k − 2 options for the color of uv, have 6s ways to color
the edges from u to s of those {ui, ri, bi} such that v /∈ {ui, ri, bi} and 2 ways to color each of the
m− 3s− 1 remaining edges. This gives less than

km6s2m−3s−1 = km2m−(3−log 6)s−1 ≤ km2m−0.4s

such extensions. �
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Let F (n, k) be the set of colorings of Kn with colors from [k], such that one color forms a
spanning subgraph of Kn and the others span pairwise vertex-disjoint (possibly empty) subgraphs
of Kn. Clearly, for a coloring in F (n, k), there is a partition of V (Kn), say V1 ∪ V2 ∪ . . . ∪ Vk−1,
and a color, say red, such that for all i, j ∈ [k] with i 6= j all edges from Vi to Vj are red, and Vi

induces a clique that uses at most two colors (one of which is red). Let F ′(n, k) ⊆ F (n, k) be the
set of such colorings with the extra assumption that there is no set of at least 0.9n vertices that
induces a 2-colored clique. Let f ′(n, k) = |F ′(n, k)|.

Remark 9. By Theorem 2, a Gallai k-coloring of Kn is in F (n, k) if, and only if, it does not
have a vertex that has three edges of different colors incident to it.

Next, we give an upper bound on f ′(n, k) (that is, we show that this type of colorings are rare).

Lemma 10. For every n, k ≥ 2, we have

f ′(n, k) ≤ 2(n
2)−0.05n2+(n+1) log k.

Proof. There are k choices for the color that forms a spanning subgraph. Assume, without loss
of generality that we have chosen color k for it. There are (k − 1)n < kn ways to partition the
vertices of Kn into (labeled and possibly empty) k − 1 classes. For i ∈ [k − 1], let xi be the
number of vertices in class i. We have that

∑
i∈[k−1] xi = n and there are 2

∑
i∈[k−1] (xi

2 ) ways1 to
color the edges of Kn so that those inside class i receive color i or color k, for every i ∈ [k − 1],
and edges between classes receive color k. Note that

∑
i∈[k−1]

(
xi

2

)
=
(

n

2

)
−

∑
1≤i<j≤k−1

xixj =
(

n

2

)
− 1

2
∑

i∈[k−1]
xi(n− xi).

By the definition of F ′(n, k) we have xi ≤ 0.9n for every i ∈ [k − 1]. Therefore,∑
i∈[k−1]

xi(n− xi) ≥
∑

i∈[k−1]
xi(0.1n) = 0.1n2.

Thus, ∑
i∈[k−1]

(
xi

2

)
≤
(

n

2

)
− 0.05n2.

In total, we get
f ′(n, k) ≤ k · kn2(n

2)−0.05n2 = 2(n
2)−0.05n2+(n+1) log k. �

The next lemma treats another case in which we can guarantee that a Gallai k-coloring has
few extensions: when it has no “large” set of vertices S that induces a k-coloring in F (|S|, k).
For k in the range of Theorem 1, the number of such extensions is significantly less than the one
for monochromatic colorings.

1For the sake of this notation, we are considering
(0

2

)
=
(1

2

)
= 0.
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Lemma 11. Let k, t, n ≥ 2 be integers such that n ≥ 75t, and ϕ ∈ Φn→k be a Gallai k-coloring
that does not contain any set of n/3 vertices which induce a coloring in F (n/3, k). Then

w(ϕ, k) ≤ tk22n−t.

Proof. Let ϕ be a Gallai k-coloring of Kn as in the statement of this lemma. We first prove that ϕ

must contain a certain structure. By Theorem 3, we can inductively choose vertices v1, . . . , vt, such
that for every i ∈ [t], there is a color ci such that vi is adjacent to at least 2(n− i+1)/5 ≥ 2n/5− t

vertices in Kn r {v1, . . . , vi−1} through edges of color ci. Let T = {v1, . . . , vt}.
Next, for each i ∈ [t], we will build a family Fi of t vertex-disjoint rainbow copies of K1,3

(where different copies may use different triples of colors), each contained in Nci(vi) r T , where
Nci(vi) stands for the set of vertices that are connected to vi via edges of color ci. Moreover, for
i 6= j, we do not care whether the copies of K1,3 in Fi are disjoint from those in Fj .

Fix i ∈ [t]. We will build Fi greedily. Suppose we have added less than t copies of K1,3 to Fi

and we want to find an extra one. In total, the current copies take at most 4t vertices. Thus,
there are at least |Nci(vi)| − 4t ≥ 2n/5− |T | − 4t = 2n/5− 5t ≥ n/3 vertices in Nci(vi) r T that
do not belong to any K1,3 in Fi. Let A be the set of those vertices. If any of them is incident to
3 edges of distinct colors with all endpoints also in A, then we can add another K1,3 to Fi and
we are done. Otherwise, by Remark 9, applied to the coloring induced by A, those vertices in A

induce a coloring in F (|A|, k). But |A| ≥ n/3, contradicting the hypothesis in Lemma 11.
Now, we prove the upper bound for w(ϕ, k). Consider a new vertex u and let us count in how

many ways we may color the edges from u to Kn.
First consider the case where for some i ∈ [t], the edge uvi receives a color different from ci, say

cu,i. Then consider the edges in the rainbow K1,3’s contained in Nci(vi) that have a color different
from ci and cu,i. Each K1,3 has at least one such edge, therefore, we can select a matching M

of size t formed by those edges. Let us denote it by M = {a1b1, . . . , atbt}. By considering the
quadruple u, vi, aj , bj , for j ∈ [t], it is easy to see that the colors of uaj and ubj must be equal
and be either ci or cu,i. Thus, there are at most 2t ways to color the 2t edges uaj and ubj , where
j ∈ [t]. It remains to color the edges from u to S where S = V (Kn) r (V (M) ∪ {vi}). Applying
Lemma 6 (to count extensions of Kn[S]), we conclude that there are less than (k − 1)2n−2t−1

ways to colors those edges. Summing over all i ∈ [t] and the choice of the color of uvi, we obtain
at most

t · (k − 1) · 2t · (k − 1)2n−2t−1 = t(k − 1)2 2n−t−1

extensions in this case.
It remains to consider the case where for all i ∈ [t], the edge uvi receives color ci. In this case,

we let S = V (Kn) r {v1, . . . , vt} and by Lemma 6, we can color the edges from u to S in less
than (k − 1)2n−t ways.

In total, adding both cases, we have w(ϕ, k) ≤ t(k − 1)22n−t−1 + (k − 1)2n−t ≤ tk22n−t. �
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Now we are ready to prove Theorem 1. The idea of the proof is that any Gallai coloring of Kn

can be treated as an extension of a coloring in F (a, k) for some maximum a. Furthermore, we
need to consider the largest 2-colored clique of the coloring on such a vertices.

2.3. Proof of Theorem 1. For each coloring ϕ ∈ Φn→k, let A(ϕ) be a set of vertices of maximum
size such that the restriction of ϕ to Kn[A(ϕ)] forms a coloring in F (|A(ϕ)|, k) (in case there is
more than one choice for A(ϕ), select one arbitrarily). Furthermore, let M(ϕ) be a set of vertices
of maximum size such that Kn[M(ϕ)] is colored with at most 2 colors. Let a := a(ϕ) = |A(ϕ)|
and m := m(ϕ) = |M(ϕ)|. (In particular, a maximum 2-colored set in F (|A(ϕ)|, k) has at most
m vertices).

We say that a 2-coloring of E(Km) is nearly monochromatic if one of the colors is used at most
m2/20 times. Consider the following sets of colorings.

C1 =
{

ϕ ∈ Φn→k : a(ϕ) <
n

6

}
,

C2 =
{

ϕ ∈ Φn→k : n > m(ϕ) ≥ n

7 and M(ϕ) is not nearly monochromatic
}

,

C3 =
{

ϕ ∈ Φn→k : n > m(ϕ) ≥ n

7 and M(ϕ) is nearly monochromatic
}

and

C4 =
{

ϕ ∈ Φn→k : a(ϕ) ≥ n

6 and m ≤ n

7

}
.

Note that Φn→k r (C1 ∪ C2 ∪ C3 ∪ C4) is the set of the k-colorings of E(Kn) that use at most
two of the colors (that is, m = n). Thus, we have |Φn→k r (C1 ∪C2 ∪C3 ∪C4)| <

(k
2
)
2(n

2). To prove
Theorem 1, it remains to show that |Ci| ≤ 2(n

2)on(1) for each i ∈ [4]. The main idea to bound
|C1| (resp. |C2|) is that although there are many options for how we choose and color A(ϕ) (resp.
M(ϕ)), those colorings can be extended to a coloring of Kn in few ways. The main gain while
counting |C1| comes from applying Lemma 11 many times, and for |C2| it comes from applying
Lemma 8 many times. On the other hand, to bound |C3| (resp. |C4|) there are so few ways to
color the set M(ϕ) (resp. A(ϕ)) that even if we use the general bound on Lemma 6 to count the
extensions of these colorings, we get few colorings in C3 (resp. C4). We use an ad-hoc argument
in the case of C3 and use Lemma 10 in the case of C4.

Upper bound for |C1|. Fix an arbitrary ordering, say (v1, . . . , vn), of the vertices of Kn and,
for each j ∈ [n], let Kj be the graph induced by {v1, . . . , vj}.

Let s = dn/2e. We start with a Gallai k-coloring of Ks and count in how many ways it can be
extended to a coloring of E(Kn) that belongs to C1. By Corollary 7, there are less than ks2(s

2)

such colorings of E(Ks). Now, for each j from s to n− 1, since we want to count the colorings in
C1, keep only those colorings of E(Kj) that do not have a set of n/6 vertices which induces a
coloring in F (n/6, k). As n/6 ≤ j/3, they also do not have j/3 vertices that induce a coloring in
F (j/3, k). By Lemma 11 with j (in place of n in Lemma 11) and t = n/150 ≤ j/75, we conclude
that there are at most tk22j−t extensions from Kj to Kj+1. Using that 2(s

2)∏n−1
j=s 2j = 2(n

2),
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k ≤ 2n/500 and n is large enough, we have

|C1| ≤ ks2(s
2)
( n−1∏

j=s

tk22j−t
)
≤ 2(n

2)k

(
tk3

2t

)bn/2c

= 2(n
2)k

(
nk3

150 · 2n/150

)bn/2c

= 2(n
2)on(1).

Upper bound for |C2|. For each m with n/7 ≤ m < n, there are
(n

m

)
≤ nn−m ways to choose

a set S of m vertices as a candidate for M(ϕ) and less than
(k

2
)
2(m

2 ) ways to color the edges induced
by it. Consider only those 2-colorings of the edges in S that are not nearly monochromatic, that
is, both colors are used more than m2/20 times.

This time the counting of extensions of such colorings to Kn is done in a different way. Let
V (Kn) r S = {vm+1, . . . , vn}. We have to color all edges incident to those vertices.

For i varying from m + 1 to n, first we color the edges from vi to S and then we color the
edges from vi to {vm+1, . . . , vi−1}. Notice that, by the maximality of m, the edges from vi to S

must use one color different from the colors on S. Therefore, by Lemma 8 (with s = m/60), there
are at most km2m−m/150 ways to color those edges. Moreover, by Lemma 6 there are at most
k2i−m−1 ways to color the edges from vi to {vm+1, . . . , vi−1}. Thus, as k ≤ 2n/4300 and n is large
enough, we have

|C2| ≤
n−1∑

m=n/7
nn−m

(
k

2

)
2(m

2 )
(

n−1∏
i=m

km2m−m/150k2i−m

)

≤ k22(n
2)

n−1∑
m=n/7

nn−m

(
k2m

2m/150

)n−m

≤ k22(n
2)

n−1∑
m=n/7

(
n2k2

2n/1050

)n−m

≤ 2(n
2) n3k4

2n/1050 = 2(n
2)on(1).

Upper bound for |C3|. For m with n/7 ≤ m < n, we have
(n

m

)
< 2n ways to choose a set S

of m vertices. We give an upper bound for how many colorings ϕ ∈ C3 are such that M(ϕ) = S.
First, there are k(k− 1) ≤ k2 ways to choose the 2 colors for the edges in M(ϕ) and to select one
color to be the less frequent one of them, say blue. Let c be the number of blue edges in M(ϕ).
Since M(ϕ) is nearly monochromatic, we have c ≤ m2/20. For 0 ≤ c ≤ m2/20, we have((m

2
)

c

)
≤
(

m2/2
c

)
≤
(

m2/2
m2/20

)
≤ (10e)m2/20.

Thus, as m ≥ n/7 is large enough, the number of ways to color the edges induced by S is at most

k2
m2/20∑

c=0

((m
2
)

c

)
≤ k2

(
m2

20 + 1
)

(10e)m2/20 ≤ k22m2/4,

because log(10e) ≤ 4.8. This is already small enough that, to bound |C3|, we simply use Lemma 6
for each j from m to n− 1 (to count in how many ways we can extend each coloring of S to Kn).
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Thus, as k ≤ 2n/200 and n is large enough, we have

|C3| ≤
n−1∑

m=n/7
2nk22m2/4

n−1∏
j=m

k2j

≤
n−1∑

m=n/7
2n+m2/4kn 2(n

2)−(m
2 )

≤ 2(n
2)

n−1∑
m=n/7

2n+n log k+m2/4−(m
2 )

≤ 2(n
2)n2n+n2/200+(n/7)2/4−(n/7

2 ) = 2(n
2)on(1).

Upper bound for |C4|. Our counting this time is similar to that for |C3|. For a such that
n/6 ≤ a ≤ n, we have

(n
a

)
< 2n ways to choose a set S of a vertices. Now, we bound the number

of colorings ϕ ∈ C4 such that A(ϕ) = S. By the definition of C4 (as 6/7 < 0.9) and Lemma 10, we
know that for every ϕ ∈ C4, there are f ′(a, k) ≤ 2(a

2)−0.05a2+(a+1) log k possibilities for the coloring
of A(ϕ). We then use Lemma 6 for each j from a to n− 1 to count in how many ways we can
extend each coloring of S to Kn. Thus, we obtain

|C4| ≤
n−1∑

a=n/6
2n2(a

2)−0.05a2+(a+1) log k
n−1∏
j=a

k2j

≤ 2(n
2)

n−1∑
a=n/6

2n−0.05a2+(a+1) log kkn

= 2(n
2)

n−1∑
a=n/6

2n−0.05a2+(a+n+1) log k.

As k ≤ 2n/60, the function h(a) = −0.05a2 + a log k + (n + 1) log k is decreasing on n/6 ≤ a.
Furthermore, as k ≤ 2n/900 and n is large enough, we have

n− 0.05a2 + (a + n + 1) log k ≤ n− 0.05
36 n2 +

(7
6n + 1

)
n

900 ≤ −n.

Therefore, we have |C4| ≤ 2(n
2)n2−n = 2(n

2)on(1).
The proof of Theorem 1 is complete. �

§3. Concluding remarks

We considered the problem of finding the number of Gallai k-colorings of Kn and gave an
asymptotically sharp bound for that number, even when k is substantially larger than n. Note
that, since no Gallai coloring of Kn uses more than n− 1 colors, we were originally considering
only the case 3 ≤ k ≤ n− 1 and that case is completely solved by Theorem 1 with room to spare.

In Lemma 6, we gave an upper bound for w(ϕ, k). Now, given any Gallai coloring of Kn,
adding an extra vertex u and coloring all edges from u to Kn with the same color, we obtain a
Gallai coloring of Kn+1. Therefore, w(ϕ, k) ≥ k. This gives another proof that c(n, k) ≥ kn−1.
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The discussion about the star colorings gives rise to another question: consider the smallest
function k0(n) such that for k > k0(n) the number of star colorings is larger than the number
of 2-colorings. Are there constants c and C such that for k ≤ ck0(n) most Gallai colorings are
2-colorings while for k ≥ Ck0(n) most are star colorings? Could we have a sharper threshold? If
not, is there some other function g(n) such that for k > g(n) most Gallai colorings are star?

One may also ask if there are threshold functions k`(n) such that for k > k`(n) the number of
Gallai colorings that use exactly ` colors is larger than the number of those that use exactly `− 1
colors.

Finally, one may also ask for an improvement to the (weak) general upper bound given by
Corollary 7, so that it still works for every pair (n, k), regardless of their relative magnitudes. We
fell that Corollary 7 can be significantly improved, because we conjecture that the number of
colorings obtained by combining 2-colorings to star colorings (for example, start with a 2-coloring
of some Kt and extend via monochromatic stars until obtaining n vertices) is significantly less
than the sum of number of 2-coloring with the number of star colorings. But there maybe be
colorings with a completely different structure that are also frequent when k is very large.

Acknowledgement. We thank Carlos Hoppen, Guilherme O. Mota and Maurício Neto for
helpful discussions.
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