6. EDOs de Primeira Ordem V:

Considerações gerais sobre a equação

$$y' = f(x, y)$$

Prof. Antonio Caminha*

31 de março de 2022

Um PVI da forma

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

nem sempre tem solução e, se tiver, pode ter mais de uma solução. Ilustremos essa afirmação por meio de dois exemplos.

Exemplo 1. O PVI

$$\begin{cases} y' = \frac{1}{2} (x + \sqrt{x^2 - 4(y+1)}) \\ y(0) = 0 \end{cases}$$

não tem solução real, uma vez que $\frac{1}{2}\big(x+\sqrt{x^2-4(y+1)}\big)\notin\mathbb{R}$ quando x=0 e y=0.

Exemplo 2. O PVI

$$\begin{cases} y' = 3y^{2/3} \\ y(0) = 0 \end{cases}$$

admite as soluções y(x) = 0 e $y(x) = x^3$, para todo $x \in \mathbb{R}$.

^{*}Copyright ©2020–2022 Prof. Dr. Antonio Caminha M. Neto. Permissão dada para uso individual.

Uma dificuldade mais sutil foi vista no último exemplo da aula passada: ainda que y' = f(x, y) tenha soluções, pode não ser possível explicitá-las. De fato, naquele exemplo mostramos que a EDO

$$y' = \frac{y - x}{y + x}$$

é tal que toda solução y=y(x), se existir, satisfaz, para $x\neq 0,$ a relação

$$\operatorname{arctg}\left(\frac{y}{x}\right) + \frac{1}{2}\log(x^2 + y^2) = C,$$

em que $C \in \mathbb{R}$ é uma constante. No entanto, conforme já observamos na aula anterior, não temos como, a partir da relação acima, explicitar y em termos de x, nem saber se soluções de fato existem.

Em geral, para garantir a existência e unicidade de soluções para o PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases},$$

nos valeremos do Teorema 5, conhecido como o **Teorema de** Existência e Unicidade de Picard¹.

Para seu enunciado e demonstração, é útil lembrarmos alguns fatos básicos de Análise, a começar pelo seguinte resultado, conhecido como o **Teorema de Weierstrass**.

Teorema 3 (Weierstrass). Se $\mathcal{D} \subset \mathbb{R}^n$ é uma região fechada e limitada, e $F: \mathcal{D} \to \mathbb{R}$ é uma função contínua, então F assume valores máximo e mínimo em \mathcal{D} .

Em outras palavras, nas notações e hipóteses do Teorema de Weierstrass, existem $(x_m, y_m), (x_M, y_M) \in \mathcal{D}$ tais que

$$F(x_m, y_m) \le F(x, y) \le F(x_M, y_M), \ \forall (x, y) \in \mathcal{D}.$$

¹Em homenagem a Émile Picard, matemático francês dos séculos XIX e XX.

Precisamos, ainda dos seguintes preliminares sobre espaços de funções contínuas: dados a < b reais, denotamos por C[a,b] o espaço vetorial das funções $f:[a,b] \to \mathbb{R}$ contínuas (as operações de espaço vetorial são as usuais: (f+g)(x) = f(x) + g(x) e $(\lambda f)(x) = \lambda f(x)$, para todas $f, g \in C[a,b]$ e $\lambda \in \mathbb{R}$).

Pelo teorema de Weierstrass, para toda $f \in C[a, b]$, a função |f| atinge um valor máximo em [a, b] (uma vez que |f| também pertence a C[a, b]). Isso garante que a função $\|\cdot\| : C[a, b] \to [0, +\infty)$, dada por

$$||f|| = \max\{|f(x)|; x \in [a, b]\},\$$

está bem definida.

Tal função é, de fato, uma norma em C[a,b]. Realmente, segue prontamente da definição que

$$\| \mathbf{i} \| f \| = 0 \Leftrightarrow f = 0 \quad \text{e} \quad \| \lambda f \| = |\lambda| \| \mathbf{i} \| f \|.$$

Ademais, se g for outra função em C[a, b], então

$$||f + g|| = \max\{|(f + g)(x)|; x \in [a, b]\}$$

$$\leq \max\{|f(x)| + |g(x)|; x \in [a, b]\}$$

$$\leq \max\{|f(x)|; x \in [a, b]\} + \max\{|g(x)|; x \in [a, b]\}$$

$$= ||f|| + ||g||.$$

Como ocorre com todo espaço vetorial normado, C[a,b] é um espaço métrico quando munido com a distância $d:C[a,b]\times C[a,b]\to [0,+\infty)$ dada por

$$d(f,g) = ||f - g||.$$

Assim, tem sentido considerarmos, em C[a, b], todos os conceitos relativos a espaços métricos, tais como sequências de Cauchy, sequências convergentes, etc.

Nesse sentido, o ingrediente fundamental para a demonstração do Teorema de Picard é o seguinte fato sobre C[a, b].

Teorema 4. O espaço vetorial normado (C[a,b], ||f||) é completo, isto é, é tal que toda sequência de Cauchy converge.

Prova. Se $(f_n)_{n\geq 1}$ é uma sequência de Cauchy em C[a,b], queremos mostrar que $(f_n)_{n\geq 1}$ converge.

Dado $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $k, l > n_0 \Rightarrow ||f_k - f_l|| < \epsilon$. Em particular, fixado arbitrariamente $x_0 \in [a, b]$, temos que

$$|f_k(x_0) - f_l(x_0)| \le \max\{|f_k(x) - f_l(x)|; x \in [a, b]\}$$

= $||f_k - f_l|| < \epsilon$,

de sorte que $(f_n(x_0))_{n\geq 1}$ é uma sequência de Cauchy em \mathbb{R} .

Como \mathbb{R} é completo, existe $\lim_{n\to+\infty} f_n(x_0)$, e podemos definir uma função $f:[a,b]\to\mathbb{R}$ pondo $f(x_0)=\lim_{n\to+\infty} f_n(x_0)$. Além disso, dado $\epsilon>0$ e tomando n_0 como acima (que só depende de ϵ) e $k,l>n_0$, fazendo $k\to+\infty$ na desigualdade $|f_k(x_0)-f_l(x_0)|<\epsilon$ obtemos

$$|f(x_0) - f_l(x_0)| \le \epsilon, \ \forall l > n_0, \ \forall \ x_0 \in [a, b].$$
 (1)

A função f é a candidata ao limite da sequência $(f_n)_{n\geq 1}$ em C[a,b]. Para tanto, temos de mostrar que $f\in C[a,b]$ e $\lim_{n\to+\infty}d(f_n,f)=0$.

Para ver que $f \in C[a, b]$ (isto é, que f é contínua), seja $\epsilon > 0$ dado e tome $n_0 \in \mathbb{N}$ tal que (1) valha para todo $l > n_0$ natural e todo $x_0 \in [a, b]$. Então, para $u, u_0 \in [a, b]$, a desigualdade triangular dá

$$|f(u) - f(u_0)| \le |f(u) - f_l(u)| + |f_l(u) - f_l(u_0)| + |f_l(u_0) - f(u_0)|$$

$$\le 2\epsilon + |f_l(u) - f_l(u_0)|.$$

Fixe $l > n_0$. Como f_l é contínua em u_0 , existe $\delta > 0$ tal que $u \in [a,b], |u-u_0| < \delta \Rightarrow |f_l(u)-f_l(u_0)| < \epsilon$. Portanto, o argumento acima garante que

$$u \in [a, b], |u - u_0| < \delta \Rightarrow |f(u) - f(u_0)| \le 2\epsilon + |f_l(u) - f_l(u_0)| < 3\epsilon.$$

Assim, f é contínua em u_0 , e a arbitrariedade de u_0 garante que f é contínua em [a, b].

Agora que sabemos que $f \in C[a, b]$, obtemos, a partir de (1), que, para $l > n_0$, vale

$$l > n_0 \Rightarrow d(f_l, f) = ||f_l - f||$$

= $\max\{|f_l(x_0) - f(x_0)|; x \in [a, b]\}$
 $\leq \epsilon.$

Então,
$$f = \lim_{n \to +\infty} f_n$$
 em $C[a, b]$.

Podemos finalmente enunciar e demonstrar o

Teorema 5 (Picard). $Sejam \mathcal{R} = [x_0 - r, x_0 + r] \times [y_0 - s, y_0 + s] \subset \mathbb{R}^2 \ e \ f : \mathcal{R} \to \mathbb{R} \ uma \ função \ contínua, \ tal \ que \frac{\partial f}{\partial y} \ existe \ e$ $também \ \'e \ contínua \ em \ \mathcal{R}. \ Se \ |f| \leq M \ e \ \left|\frac{\partial f}{\partial y}\right| < N \ em \ \mathcal{R}, \ então$ $o \ PVI$

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
 (2)

tem uma única solução $y:[x_0-c,x_0+c]\to\mathbb{R},\ com\ c=\min\left\{r,\frac{s}{M},\frac{1}{N}\right\}\ e\ \mathrm{Graf}(y)\subset\mathcal{R}.$

Prova. Inicialmente, para $0 < c \le r$, o Teorema Fundamental do Cálculo garante que a função $y : [x_0 - c, x_0 + c] \to \mathbb{R}$ satisfaz (2) se, e só se,

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t))dt.$$
 (3)

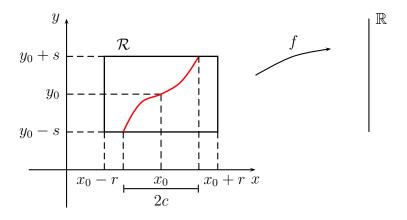


Figura 1: o Teorema de Picard.

A fim de encontrar uma tal função y, comecemos com a função constante $y_0(x) := y_0$ e, a partir de uma função contínua $y_n : [x_0 - c, x_0 + c] \to \mathbb{R}$ com gráfico contido em \mathcal{R} , definamos uma nova função $y_{n+1} : [x_0 - c, x_0 + c] \to \mathbb{R}$ pondo

$$y_{n+1}(x) = y_0 + \int_{x_0}^x f(t, y_n(t)) dt.$$
 (4)

(A condição $Graf(y_n) \subset \mathcal{R}$ é necessária, a fim de que a expressão $f(t, y_n(t))$ tenha sentido.)

A continuidade de f garante a existência da integral e a continuidade de y_{n+1} . Por outro lado, a hipótese $\operatorname{Graf}(y_n) \subset \mathcal{R}$, juntamente com o fato de que $c \leq \min \left\{r, \frac{s}{M}\right\}$, dão $\operatorname{Graf}(y_{n+1}) \subset \mathcal{R}$. Realmente, pela desigualdade triangular para integrais,

$$|y_{n+1}(x) - y_0| = \left| \int_{x_0}^x f(t, y_n(t)) dt \right| \le \left| \int_{x_0}^x |f(t, y_n(t))| dt \right|$$
$$\le \left| \int_{x_0}^x M dt \right| = M|x - x_0| \le Mc \le s,$$

de sorte que $y_{n+1}(x) \in [y_0 - s, y_0 + s]$.

Agora, o fato de $\left|\frac{\partial f}{\partial y}(x,y)\right| \leq N$, para todo $(x,y) \in \mathbb{R}$ garante, a partir de (4) e com o auxílio do Teorema do Valor Médio (TVM), que, para $x \in [x_0 - c, x_0 + c]$,

$$|y_{n+1}(x) - y_n(x)| = \left| \int_{x_0}^x \left(f(t, y_n(t)) - f(t, y_{n-1}(t)) \right) dt \right|$$

$$\leq \left| \int_{x_0}^x \left| f(t, y_n(t)) - f(t, y_{n-1}(t)) \right| dt \right|$$

$$= \left| \int_{x_0}^x \left| \frac{\partial f}{\partial y}(t, \xi_n(t)) \right| \left| y_n(t) - y_{n-1}(t) \right| dt \right| ,$$

para algum real $\xi_n(t)$ pertencente ao intervalo de extremos $y_n(t)$ e $y_{n-1}(t)$. Mas, como $\left|\frac{\partial f}{\partial y}\right| \leq N$ em \mathcal{R} , segue que

$$|y_{n+1}(x) - y_n(x)| = \left| \int_{x_0}^x N |y_n(t) - y_{n-1}(t)| dt \right|$$

$$\leq N ||y_n - y_{n-1}|| \left| \int_{x_0}^x dt \right|$$

$$\leq N ||x - x_0|| ||y_n - y_{n-1}||$$

$$\leq Nc ||y_n - y_{n-1}||,$$

em que $\|\cdot\|$ é a norma em $C[x_0-c,x_0+c]$. Como $c\leq \frac{1}{N}$, temos 0< Nc<1. Fazendo $\lambda=Nc$, segue das estimativas acima que

$$||y_{n+1} - y_n|| = \max\{|y_{n+1}(x) - y_n(x)|; x \in [x_0 - c, x_0 + c]\}$$

$$\leq \lambda ||y_n - y_{n-1}||.$$

Então, para $m, n \in \mathbb{N}$, com m > n, essa última estimativa e a desigualdade triangular dão, primeiramente,

$$||y_{n+1} - y_n|| \le \lambda ||y_n - y_{n-1}|| \le \lambda^2 ||y_{n-1} - y_{n-2}|| \le \dots$$

 $\le \lambda^n ||y_1 - y_0||;$

a partir daí,

$$||y_m - y_n|| = \left\| \sum_{j=n}^{m-1} (y_{j+1} - y_j) \right\| \le \sum_{j=n}^{m-1} ||y_{j+1} - y_j||$$

$$\le \sum_{j=n}^{m-1} \lambda^j ||y_1 - y_0|| < \sum_{j \ge n} \lambda^j ||y_1 - y_0||$$

$$= \frac{\lambda^n}{1 - \lambda} ||y_1 - y_0||.$$

Como $0 < \lambda < 1 \Rightarrow \lim_{n \to +\infty} \lambda^n = 0$, temos que, dado $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\frac{\lambda^n}{1-\lambda} ||y_1 - y_0|| < \epsilon$ para $n > n_0$. Então,

$$m > n > n_0 \Rightarrow ||y_m - y_n|| \le \frac{\lambda^n}{1 - \lambda} ||y_1 - y_0|| < \epsilon,$$

de sorte que a sequência $(y_n)_{n\geq 1}$ é de Cauchy em $C[x_0-c,x_0+c]$, logo, convergente, pelo teorema anterior.

Uma vez que convergência em $C[x_0-c,x_0+c]$ é, em última análise, convergência uniforme, fazendo $n\to +\infty$ em (4), nós obtemos

$$y(x) = \lim_{n \to +\infty} y_{n+1}(x) = \lim_{n \to +\infty} \left(y_0 + \int_{x_0}^x f(t, y_n(t)) dt \right)$$

= $y_0 + \int_{x_0}^x \lim_{n \to +\infty} f(t, y_n(t)) dt$
= $y_0 + \int_{x_0}^x f(t, y(t)) dt$,

conforme desejado.

A demonstração da unicidade da solução é filosoficamente similar. Começando com duas soluções $y, \tilde{y} : [x_0 - c, x_0 + c] \to \mathbb{R}$,

utilizamos (3) e o TVM para obter

$$|y(x) - \tilde{y}(x)| = \left| \int_{x_0}^x \left(f(t, y(t)) - f(t, \tilde{y}(t)) \right) dt \right|$$

$$\leq \left| \int_{x_0}^x \left| \frac{\partial f}{\partial y}(t, \xi(t)) \right| |y(t) - \tilde{y}(t)| dt \right|$$

$$\leq \left| \int_{x_0}^x N|y(t) - \tilde{y}(t)| dt \right|,$$

onde $\xi(t)$ pertence ao intervalo de extremos y(t) e $\tilde{y}(t)$. A partir daí, sendo

$$C = \max\{|y(x) - \tilde{y}(x)|; x \in [x_0 - c, x_0 + c]\},\$$

(C existe graças ao Teorema de Weierstrass) uma fácil indução permite concluir que

r que
$$|y(x) - \tilde{y}(x)| \le C N \frac{|x - x_0|^n}{n!}, \qquad (5)$$

para todos $x \in [x_0 - c, x_0 + c]$ e $n \in \mathbb{N}$. Então, como $|x - x_0| \le c$, tem-se

$$|y(x) - \tilde{y}(x)| \le CN \cdot \frac{c^n}{n!}, \ \forall \ n \in \mathbb{N}.$$

Por fim, como $\frac{c^n}{n!} \to 0$ à medida que $n \to +\infty$, conclui-se que $|y(x) - \tilde{y}(x)| \le 0$ para todo $x \in [x_0 - c, x_0 + c]$, logo, $y(x) = \tilde{y}(x)$, para todo tal x.

Exemplo 6. Vejamos o que o Teorema de Picard diz sobre o PVI

$$\begin{cases} y' = \frac{y-x}{y+x} \\ y(1) = 1 \end{cases},$$

tomando $\mathcal{R} = [0, 2] \times \left[\frac{1}{2}, \frac{3}{2}\right]$ como domínio.

Nesse caso, $f(x,y) = \frac{y-x}{y+x}$ é claramente contínua em \mathcal{R} . Da mesma forma,

$$\frac{\partial f}{\partial y}(x,y) = \frac{1(y+x) - (y-x)1}{(y+x)^2} = \frac{2x}{(y+x)^2}$$

é contínua em \mathcal{R} . Portanto, f e $\frac{\partial f}{\partial y}$ são limitadas em \mathcal{R} , pelo Teorema de Weierstrass. De fato, pela desigualdade triangular, temos

$$|f(x,y)| = \frac{|y-x|}{|y+x|} \le \frac{|y|+|x|}{y+x} = \frac{y+x}{y+x} = 1.$$

Também,

$$\left| \frac{\partial f}{\partial y}(x,y) \right| = \frac{2x}{(y+x)^2} \le \frac{2 \cdot 2}{(1/2)^2} = 16.$$

Tomando $x_0 = 1$, r = 1, $y_0 = 1$, $s = \frac{1}{2}$, M = 1 e N = 16 no Teorema de Picard, obtemos $c = \min\left\{1, \frac{1/2}{1}, \frac{1}{16}\right\} = \frac{1}{16}$. Então, o teorema garante que o PVI tem uma única solução $y : \left[\frac{15}{16}, \frac{17}{16}\right] \to \mathbb{R}$, com $\operatorname{Graf}(y) \subset [0, 2] \times \left[\frac{1}{2}, \frac{3}{2}\right]$.

Note que não temos muita ideia quanto ao formato do gráfico da solução. O que sabemos, e graças aos argumentos da aula anterior, é que y = y(x) satisfaz a relação

$$\arctan\left(\frac{y}{x}\right) + \frac{1}{2}\log(x^2 + y^2) = C,$$

com $C = \frac{\pi}{4} + \frac{1}{2} \log 2$ (tal valor de C é aquele que faz com que y(1) = 1).

Suponha, agora, que f = f(x, y) seja uma função definida em uma região $\mathcal{D} \subset \mathbb{R}^2$ (não necessariamente um retângulo)

e satisfazendo, em cada retângulo fechado contido em \mathcal{D} , as condições do Teorema de Picard.

Fixado um ponto $(x_0, y_0) \in \mathcal{D}$, podemos tomar um retângulo $\mathcal{R}_{(x_0, y_0)} = [x_0 - r, x_0 + r] \times [y_0 - s, y_0 + s] \subset \mathcal{D}$ (acompanhe na próxima figura, na qual mostramos dois desses retângulos).

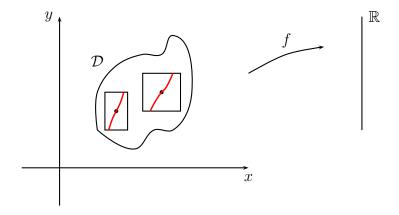


Figura 2: soluções de y' = f(x, y) com condições iniciais distintas.

Aplicando o Teorema de Picard a esse retângulo, obtemos uma solução para o PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases},$$

definida num intervalo de centro x_0 , com gráfico contido em $\mathcal{R}_{(x_0,y_0)}$ (logo, em \mathcal{D}) e passando pelo ponto (x_0,y_0) (uma vez que $y(x_0) = y_0$).

Por outro lado, a parte de unicidade do Teorema de Picard garante que, dado um ponto $(x_0, y_0) \in \mathcal{D}$, há uma *única* curva que passa por ele e que é o gráfico de uma solução da EDO y' = f(x, y) tal que $y(x_0) = y_0$.

Nas notações da discussão acima, dizemos que o gráfico de uma solução y = y(x) da EDO y' = f(x, y), parametrizado como a curva $x \mapsto (x, y(x))$, é uma **curva integral** da EDO.

A parte de unicidade do Teorema de Picard garante que a EDO y' = f(x, y) não admite duas curvas integrais passando por um mesmo ponto (x_0, y_0) com velocidades distintas. Realmente, se duas tais curvas existissem, então o PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

teria duas soluções distintas, o que é um absurdo.

Com essa nomenclatura, temos a seguinte

Definição 7. Sejam dadas uma região $\mathcal{D} \subset \mathbb{R}^2$ e uma função contínua $f: \mathcal{D} \to \mathbb{R}$, com derivada parcial $\frac{\partial f}{\partial y}: \mathcal{D} \to \mathbb{R}$ também contínua. O **espaço de fase** da EDO y' = f(x, y) em \mathcal{D} , é o conjunto das curvas integrais da EDO contidas em \mathcal{D} .

Exemplo 8. As soluções da EDO y' = -y são as funções $y(x) = Ce^{-x}$, com $C \in \mathbb{R}$. Assim, o espaço de fase da EDO em $\mathcal{D} = \mathbb{R}^2$ e formado pelo eixo das abscissas (a curva-solução correspondente a C = 0), juntamente com as curvas integrais $x \mapsto (x, Ce^{-x})$, com $C \in \mathbb{R}^*$.

Ainda que não consigamos explicitar as soluções da EDO y' = f(x, y), um raciocínio geométrico simples nos permite ter uma boa ideia qualitativa de seu espaço de fase. Isto se deve ao fato de que, mesmo não conhecendo a solução y = y(x) do PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases},$$

conhecemos a equação de sua tangente no ponto (x_0, y_0) .

Realmente, tal tangente tem coeficiente angular

$$y'(x_0) = f(x_0, y(x_0)) = f(x_0, y_0),$$

logo, equação

$$y - y_0 = f(x_0, y_0)(x - x_0). (6)$$

Então, conhecendo o ponto (x_0, y_0) e a função f, conhecemos também a reta acima.

A partir daí, temos a seguinte

Definição 9. Sejam dadas uma região $\mathcal{D} \subset \mathbb{R}^2$ e uma função contínua $f: \mathcal{D} \to \mathbb{R}$, com derivada parcial $\frac{\partial f}{\partial y}: \mathcal{D} \to \mathbb{R}$ também contínua. O **campo de direções** em \mathcal{D} associado à EDO y' = f(x,y), é o conjunto das retas do plano definidas pela equação (6), à medida que o ponto (x_0, y_0) varia em \mathcal{D} .

Exemplo 10. Na figura a seguir, esboçamos (para facilitar a compreensão) pequenos segmentos de cada uma das retas que compõem o campo de direções associado à EDO $y' = -\frac{y}{x}$ no domínio $\mathcal{D} = (0,4) \times (0,4)$.

Como $f(x,y) = -\frac{y}{x}$, a equação da tangente ao gráfico da solução, relativa à condição inicial $y(x_0) = y_0$, é

$$y - y_0 = -\frac{y_0}{x_0}(x - x_0)$$

ou, ainda,

$$y = 2y_0 - \frac{y_0 x}{x_0}.$$

Fazendo $(x_0, y_0) = (\frac{j}{2}, \frac{k}{2})$, com $1 \le j, k \le 7$ inteiros, obtemos a reta

$$y = k - \frac{kx}{j},$$

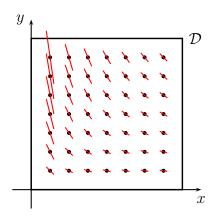


Figura 3: Campo de direções de $y' = -\frac{y}{x}$.

da qual traçamos o segmento correspondente à variação de x ao longo do intervalo $\left(\frac{j}{2} - \frac{1}{10}, \frac{j}{2} + \frac{1}{10}\right)$.

Note que, mesmo com apenas $7 \cdot 7 = 49$ segmentos, já é possível ter uma ideia razoável do retrato de fase da EDO.

Estudo & Problemas

- 1. Leia a seção 2 do capítulo 1.
- 2. Explique porque o Teorema de Picard não se aplica ao Exemplo 2 (e, portanto, porque não há contradição no fato dele ter duas soluções.)
- 3. Prove (5). (Sug: faça indução sobre n, utilizando a desigualdade para $|y(x) \tilde{y}(x)|$ deduzida logo antes de (5).)
- 4. Esboce o retrato de fase da EDO y' = -y.

- 5. Encontre as soluções da EDO $y' = -\frac{y}{x}$, esboce as curvas integrais correspondentes e verifique que o retrato de fase em $\mathcal{D} = (0,4) \times (0,4)$ é compatível com o campo de direções esboçado no Exemplo 10.
- 6. Esboce o campo de direções de $y' = \frac{y-x}{y+x}$ na faixa $(0,5) \times \mathbb{R}$.